Skip to main content

Coherent Electronic Transport in Periodic Crystals

Abstract

We consider independent electrons in a periodic crystal in their ground state, and turn on a uniform electric field at some prescribed time. We rigorously define the current per unit volume and study its properties using both linear response and adiabatic theory. Our results provide a unified framework for various phenomena such as the quantization of Hall conductivity of insulators with broken time-reversibility, the ballistic regime of electrons in metals, Bloch oscillations in the long-time response of metals, and the static conductivity of graphene. We identify explicitly the regime in which each holds.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Bachmann, S., De Roeck, W., Fraas, M.: The adiabatic theorem and linear response theory for extended quantum systems. Commun. Math. Phys. 361(3), 997–1027 (2018)

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Bellissard, J.: Coherent and dissipative transport in aperiodic solids: an overview. In: Dynamics of Dissipation, pp. 413–485. Springer (2002)

  3. 3.

    Bellissard, J., van Elst, A., Schulz-Baldes, H.: The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35(10), 5373–5451 (1994)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Bohm, D.: Note on a theorem of bloch concerning possible causes of superconductivity. Phys. Rev. 75(3), 502 (1949)

    ADS  Article  Google Scholar 

  5. 5.

    Bouclet, J.-M., Germinet, F., Klein, A., Schenker, J.H.: Linear response theory for magnetic Schrödinger operators in disordered media. J. Funct. Anal. 226(2), 301–372 (2005)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Cancès, E., Ehrlacher, V., Gontier, D., Levitt, A., Lombardi, D.: Numerical quadrature in the Brillouin zone for periodic Schrödinger operators. Numerische Mathematik (in press)

  7. 7.

    Cornwell, J.F.: Group Theory in Physics, vol. 2. Academic Press, Cambridge (1984)

    MATH  Google Scholar 

  8. 8.

    Das Sarma, S., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    De Nittis, G., Lein, M.: Linear Response Theory—An Analytic-Algebraic Approach. Springer Briefs in Mathematical Physics, vol. 21. Springer, New York (2017)

  10. 10.

    Fefferman, C., Weinstein, M.: Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc. 25(4), 1169–1220 (2012)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Fermanian Kammerer, C., Clotilde, G.P.: Mesures semi-classiques et croisements de mode. Bulletin de la SMF 130, 123–168 (2002)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Fermanian Kammerer, C., Clotilde, L.C.: Single switch surface hopping for molecular dynamics with transitions. J. Chem. Phys. 128, 102–144 (2008)

    Article  Google Scholar 

  13. 13.

    Fermanian Kammerer, C., Clotilde, L.C.: An Egorov theorem for avoided crossings of eigenvalue surfaces. Commun. Math. Phys. 353(3), 1011–1057 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    Fermanian Kammerer, C., Clotilde, M.F.: A kinetic model for the transport of electrons in a graphene layer. J. Comput. Phys. 327, 450–483 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Fiorenza, D., Monaco, D., Panati, G.: \(\mathbb{Z}_2\) invariants of topological insulators as geometric obstructions. Commun. Math. Phys. 343(3), 1115–1157 (2016)

    ADS  Article  Google Scholar 

  16. 16.

    Freund, S., Teufel, S.: Peierls substitution for magnetic Bloch bands. Anal. PDE 9(4), 773–811 (2016)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Gall, D.: Electron mean free path in elemental metals. J. Appl. Phys. 119(8), 085101 (2016)

    ADS  Article  Google Scholar 

  18. 18.

    Giuliani, A., Mastropietro, V., Porta, M.: Universality of conductivity in interacting graphene. Commun. Math. Phys. 311(2), 317–355 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    Hagedorn, G.A.: Molecular propagation through electron energy level crossings. Memoirs AMS 111, 536 (1994)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Haldane, F., Duncan, M.: Model for a quantum Hall effect without landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61(18), 2015 (1988)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    Kato, T.: Perturbation Theory for Linear Operators, vol. 132. Springer, Berlin (1966)

    Book  Google Scholar 

  22. 22.

    Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan 12(6), 570–586 (1957)

  23. 23.

    Kuchment, P.: An overview of periodic elliptic operators. Bull. Am. Math. Soc. (N.S.) 53(3), 343–414 (2016)

  24. 24.

    Leinfelder, H., Simader, C.G.: Schrödinger operators with singular magnetic vector potentials. Math. Z. 176(1), 1–19 (1981)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Leo, K., Bolivar, P.H., Brüggemann, F., Schwedler, R.K.K.: Observation of Bloch oscillations in a semiconductor superlattice. Solid State Commun. 84(10), 943–946 (1992)

    ADS  Article  Google Scholar 

  26. 26.

    Marcelli, G., Panati, G., Tauber, C.: Spin conductance and spin conductivity in topological insulators: analysis of Kubo-like terms. Annales Henri Poincaré (2019)

  27. 27.

    Monaco, D., Panati, G., Pisante, A., Teufel, S.: Optimal decay of Wannier functions in Chern and quantum Hall insulators. Commun. Math. Phys. 359(1), 61–100 (2018)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Monaco, D., Teufel, S.: Adiabatic currents for interacting electrons on a lattice. Rev. Math, Phys (2017)

    MATH  Google Scholar 

  29. 29.

    Panati, G.: Triviality of Bloch and Bloch-Dirac bundles. Ann. Henri Poincaré 8(5), 995–1011 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    Panati, G., Spohn, H., Teufel, S.: Effective dynamics for Bloch electrons: Peierls substitution and beyond. Commun. Math. Phys. 242(3), 547–578 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  31. 31.

    Rackauckas, C., Nie, Q.: DifferentialEquations.jl—a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5(1) (2017)

  32. 32.

    Reed, M.C., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. Academic Press, New York (1975)

  33. 33.

    Reed, M.C., Barry, S.: Methods of Modern Mathematical Physics. IV. Analysis of operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  34. 34.

    Simon, B.: Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51(24), 2167 (1983)

    ADS  MathSciNet  Article  Google Scholar 

  35. 35.

    Stiepan, H.M., Teufel, S.: Semiclassical approximations for hamiltonians with operator-valued symbols. Commun. Math. Phys. 320(3), 821–849 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  36. 36.

    Teufel, S.: Adiabatic Perturbation Theory in Quantum Dynamics. Lecture Notes in Mathematics, Springer, Berlin (2003)

    Book  Google Scholar 

  37. 37.

    Teufel, S.: Non-equilibrium almost-stationary states and linear response for gapped quantum systems. Commun. Math. Phys (2019)

  38. 38.

    Thouless, D.J., Kohmoto, M., Nightingale, M.P., den Nijs, M.: Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49(6), 405 (1982)

    ADS  Article  Google Scholar 

  39. 39.

    Van Kampen, N.G.: Case against linear response theory. Physica Norvegica 5(3–4), 279–284 (1971)

    Google Scholar 

  40. 40.

    Van Vliet, C.M.: On van kampen’s objections against linear response theory. J. Stat. Phys. 53(1–2), 49–60 (1988)

    ADS  MathSciNet  Article  Google Scholar 

  41. 41.

    Wilcox, C.H.: Theory of Bloch waves. J. Anal. Math. 33, 146–167 (1978)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Zak, J.: Magnetic translation group. Phys. Rev. 2(134), A1602–A1606 (1964)

    Article  Google Scholar 

  43. 43.

    Zener, C.: A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. Lond. Ser. A 145(855), 523–529 (1934)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Caroline Lasser for stimulating discussions all along the preparation of this article. We thank the two reviewers for their constructive suggestions, and in particular for pointing out to us a more elegant proof of Proposition 2.1 and the extension to uniform magnetic fields discussed in Remark 2.3. This project has been supported by Labex Bezout and has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No 810367). The second author thanks the mathematics department of the Technische Universität München for hosting her during the final writing of this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Clotilde Fermanian Kammerer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Vieri Mastropietro.

Proofs of Two Technical Lemmata

Proofs of Two Technical Lemmata

Proof of Lemma 4.1

Proof

We replicate the proof of the Faris–Lavine Theorem given in [32], replacing the Laplacian by \(\frac{1}{2}(-i\nabla + {\mathcal {A}})^2\). It consists in verifying the following two hypotheses of [32, Theorem X.37]. Let \(A = \frac{1}{2}(-i\nabla +{\mathcal {A}})^2 + W+V\) and \(N=A+2c|x|^2 +b\), where \(b\in {{\mathbb {R}}}\) will be specified below:

$$\begin{aligned} {} \textit{there exists h, such that for any } \phi \in {\mathcal {C}}, \quad \Vert A\phi \Vert \le h \Vert N\phi \Vert ; \end{aligned}$$
(90)
$$\begin{aligned} \textit{for some} \ell ,\textit{ for any } \phi \in {\mathcal {C}},\quad |(A\phi ,N\phi ) - (N\phi ,A\phi )| \le \ell \Vert N^\frac{1}{2} \phi \Vert ^2. \end{aligned}$$
(91)

By hypothesis 3 in Lemma 4.1 and the conditions on W, it is possible to choose b so that \(N\ge 1\). As quadratic forms on \({\mathcal {C}}\),

$$\begin{aligned} N^2 = (A+b)^2 + 4c \sum _{j=1}^d x_j (A+b+c|x|^2)x_j - 2cd. \end{aligned}$$

Hypotheses 1 and 3 guarantee that \(A+b+c|x|^2\) is bounded below. Hence, increasing the value of b if necessary to make this operator positive, we have

$$\begin{aligned} \Vert (A+b)\phi \Vert ^2_{L^2} \le \Vert N\phi \Vert ^2_{L^2} +4cd\Vert \phi \Vert ^2_{L^2}, \end{aligned}$$

which proves (90).

For (91), we observe that

$$\begin{aligned}&\pm i [A,N] = \pm 2c(x \cdot (-i\nabla +{\mathcal {A}}) + (-i\nabla +{\mathcal {A}})\cdot x)\\&\le 2 c \left( (-i\nabla +{\mathcal {A}})^2 +|x|^2\right) \le \ell N, \end{aligned}$$

where we have used

$$\begin{aligned} (-i\nabla + {\mathcal {A}})^2 + |x|^2 \pm (x\cdot (-i\nabla + {\mathcal {A}}) + (-i\nabla + {\mathcal {A}})\cdot x) = (-i\nabla + {\mathcal {A}} \pm x)^2 \ge 0 \end{aligned}$$

and

$$\begin{aligned}&N = \left( \frac{a}{2} (-i\nabla + {\mathcal {A}})^2 + V\right) + (W+c|x|^2)\\&+ \frac{1-a}{2}(-i\nabla + {\mathcal {A}})^2 + c|x|^2 +b \ge e((-i\nabla + {\mathcal {A}})^2+|x|^2), \end{aligned}$$

where \(e = \min (c,\frac{1-a}{2})>0\) and where b is chosen so that

$$\begin{aligned} b- f +\min \,\sigma \left( \frac{a}{2} (-i\nabla + {\mathcal {A}})^2 + V\right) \ge 0. \end{aligned}$$

This proves (91). Hence A is essentially self-adjoint on \({\mathcal {C}}\). \(\square \)

Proof of Lemma 4.2

Proof

By the Kato-Rellich theorem, for any \(0\le t\le T\), H(t) is self-adjoint on \(L^2_{\mathrm{per}}\) with domain \(H^2_\mathrm{per}\), and bounded below. We will show that there exists \(\mu >0\) so that the graph norm of \((H(t)+\mu )\) for any \(0\le t \le T\) is equivalent to the \(H^2_{\mathrm{per}}\)-norm. This will prove Lemma 4.2 by Proposition 2.1 in [36] (see also Theorem X.70 in [32]).

We have for any \(\mu >0\), \(0\le t\le T\) and \(\phi \in H^{2}_\mathrm{per}\),

$$\begin{aligned} \Vert (H(t)+\mu )\phi \Vert _{L^{2}_{\mathrm{per}}} \le (1+a)\Vert H_0 \phi \Vert _{L^{2}_{\mathrm{per}}} + (b+\mu ) \Vert \phi \Vert _{L^{2}_{\mathrm{per}}} \le (1+a+b+\mu ) \Vert \phi \Vert _{H^2_{\mathrm{per}}}, \end{aligned}$$

and so the graph norm is controlled by the \(H^2_{\mathrm{per}}\)-norm.

For the other inequality, we relate the resolvent of H(t) to that of \(H_0\) by a bounded operator, with bounded inverse. Notice that, for any \(\mu >0\), since \(H_0\) is positive,

$$\begin{aligned} \forall \; 0\le t\le T, \quad (H(t)+\mu ) = (1+H_1(t)(H_0+\mu )^{-1})(H_0+\mu ). \end{aligned}$$

Furthermore,

$$\begin{aligned} \forall \; 0\le t\le T, \quad \Vert H_1(t)(H_0+\mu )^{-1}\Vert \le a\Vert H_0(H_0+\mu )^{-1}\Vert +b\Vert (H_0+\mu )^{-1}\Vert \le a +\frac{b}{\mu }. \end{aligned}$$

and so, for \(\mu > \frac{b}{1-a}\), the operator \(1+ H_1(t)(H_0+\mu )^{-1}\) is bounded and invertible with bounded inverse in \(L^{2}_{\mathrm{per}}\). Therefore \((H(t)+\mu )^{-1}\) is bounded from \(L^2_{\mathrm{per}}\) to \(H^2_{\mathrm{per}}\), which means there exists \(C>0\) such that, for any \(\phi \in H^2_{\mathrm{per}}\) and \(0\le t\le T\),

$$\begin{aligned} \Vert \phi \Vert _{H^2_{\mathrm{per}}} = \Vert (H(t)+\mu )^{-1}(H(t)+\mu )\phi \Vert _{H^2_{\mathrm{per}}} \le C\Vert (H(t)+\mu )\phi \Vert _{L^{2}_{\mathrm{per}}}, \end{aligned}$$

which concludes the proof. \(\square \)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cancès, E., Fermanian Kammerer, C., Levitt, A. et al. Coherent Electronic Transport in Periodic Crystals. Ann. Henri Poincaré 22, 2643–2690 (2021). https://doi.org/10.1007/s00023-021-01026-3

Download citation