Skip to main content
Log in

Equilibrium States in Thermal Field Theory and in Algebraic Quantum Field Theory

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We compare the construction of equilibrium states at finite temperature for self-interacting massive scalar quantum field theories on Minkowski spacetime proposed by Fredenhagen and Lindner (Commun Math Phys 332:895, 2014) with results obtained in ordinary thermal field theory, by means of real-time and Matsubara (or imaginary time) formalisms. In the construction of this state, even if the adiabatic limit is considered, the interaction Lagrangian is multiplied by a smooth time cut-off. In this way the interaction starts adiabatically and the correlation functions are free from divergences. The corresponding interaction Hamiltonian is a local interacting field smeared over the interval of time where the chosen cut-off is not constant. We observe that, in order to cope with this smearing, the Matsubara propagator, which is used to expand the relative partition function between the free and interacting equilibrium states, needs to be modified. We thus obtain an expansion of the correlation functions of the equilibrium state for the interacting field as a sum over certain type of graphs with mixed edges, some of them correspond to modified Matsubara propagators and others to propagators of the real-time formalism. An integration over the adiabatic time cut-off is present in every vertex. However, at every order in perturbation theory, the final result does not depend on the particular form of the cut-off function. The obtained graphical expansion contains in it both the real-time formalism and the Matsubara formalism as particular cases. For special interaction Lagrangians, the real-time formalism is recovered in the limit where the adiabatic start of the interaction occurs at past infinity. At least formally, the combinatorics of the Matsubara formalism is obtained in the limit where the switch on is realised with an Heaviside step function and the field observables have no time dependence. Finally, we show that a particular factorisation which is used to derive the ordinary real-time formalism holds only in special cases and we present a counterexample. We conclude with the analysis of certain correlation functions, and we notice that corrections to the self-energy in a \(\lambda \phi ^4\) at finite temperature theory are expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In the following we shall use the following convention regarding the Fourier transform: \(B({\mathbf {x}})=\frac{1}{(2\pi )^3}\int {d}^3{\mathbf {p}}{\hat{B}}({\mathbf {p}})^{-i{\mathbf {p}}\cdot {\mathbf {x}}}\), \({\hat{B}}({\mathbf {k}})=\int B({\mathbf {x}})e^{i{\mathbf {p}}\cdot {\mathbf {x}}}\).

References

  1. Altherr, T.: Infrared problem in \(g\phi ^4\) theory at finite temperature. Phys. Lett. B 238, 360 (1990)

    ADS  Google Scholar 

  2. Araki, H.: Relative Hamiltonian for faithful normal states of a von Neumann algebra. Publ. RIMS Kyoto Univ. 9(1), 165–209 (1973)

    MathSciNet  MATH  Google Scholar 

  3. Bratteli, O., Kishimoto, A., Robinson, D.W.: Stability properties and the KMS condition. Commun. Math. Phys. 61, 209–238 (1978)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 1. Springer, Berlin (1987)

    MATH  Google Scholar 

  5. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2. Springer, Berlin (1997)

    MATH  Google Scholar 

  6. Brunetti, R., Duetsch, M., Fredenhagen, K.: Perturbative algebraic quantum field theory and the renormalization groups. Adv. Theor. Math. Phys. 13, 1541 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Brunetti, R., Fredenhagen, K., Köhler, M.: The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Calzetta, E., Hu, B.L.: Nonequilibrium quantum fields: closed-time-path effective action, Wigner function, and Boltzmann equation. Phys. Rev. D 37, 2878–2900 (1988)

    ADS  MathSciNet  Google Scholar 

  11. Carrington, M.E., Mrowczynski, S.: Transport theory beyond binary collisions. Phys. Rev. D 71, 065007 (2005)

    ADS  Google Scholar 

  12. Chilian, B., Fredenhagen, K.: The time-slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287, 513–522 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Dappiaggi, C., Drago, N.: Constructing Hadamard states via an extended Møller operator. Lett. Math. Phys. 106(11), 1587–1615 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Drago, N.: Thermal State with Quadratic Interaction. Ann. Henri Poincaré 20, 905–927 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Drago, N., Gèrard, C.: On the adiabatic limit of Hadamard states. Lett. Math. Phys. 107, 1409 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Drago, N., Faldino, F., Pinamonti, N.: On the stability of KMS states in perturbative algebraic quantum field theories. Commun. Math. Phys. 357, 267–293 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Drago, N., Faldino, F., Pinamonti, N.: Relative entropy and entropy production for equilibrium states in pAQFT. Ann. Henri Poincaré 19, 3289 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Drago, N., Hack, T.-P., Pinamonti, N.: The generalised principle of perturbative agreement and the thermal mass. Ann. Henri. Poincaré 18, 807–868 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Duetsch, M., Fredenhagen, K., Keller, K.J., Rejzner, K.: Dimensional regularization in position space and a Forest Formula for Epstein–Glaser renormalization. J. Math. Phys. 55, 122303 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Inst. Henri Poincaré Section A XIX(3), 211 (1973)

    MathSciNet  MATH  Google Scholar 

  21. Fredenhagen, K., Lindner, F.: Construction of KMS states in perturbative QFT and renormalized hamiltonian dynamics. Commun. Math. Phys. 332, 895 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Fredenhagen, K., Rejzner, K.: Perturbative algebraic quantum field theory. In: Calaque, D., Strobl, T. (eds.) Mathematical Aspects of Quantum Field Theories. Mathematical Physics Studies. Springer, Cham (2015)

    MATH  Google Scholar 

  23. Fulling, S.A., Ruusenaars, S.N.M.: Temperature, periodicity and horizons. Phys. Rep. 152, 135–176 (1987)

    ADS  MathSciNet  Google Scholar 

  24. Hollands, S., Wald, R.M.: Local Wick polynomials and time-ordered products of quantum fields in curved space-time. Commun. Math. Phys. 223, 289 (2001)

    ADS  MATH  Google Scholar 

  25. Hollands, S., Wald, R.M.: Existence of local covariant time-ordered products of quantum fields in curved space-time. Commun. Math. Phys. 231, 309 (2002)

    ADS  MATH  Google Scholar 

  26. Hollands, S., Wald, R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (2003)

    MATH  Google Scholar 

  28. Kajantie, K. (ed.): Quark Matter ’84. Springer, Berlin (1985)

  29. Kapusta, J.I., Gale, C.: Finite-Temperature Field Theory—Principles and Applications. Cambdridge University Press, Cambdridge (2006)

    MATH  Google Scholar 

  30. Keldysh, L.V.: Diagram technique for nonequilibrium processes. JETP 20, 1018 (1965)

    MathSciNet  Google Scholar 

  31. Landsman, N.P., van Weert, C.G.: Real and imaginary time field theory at finite temperature and density. Phys. Rep. 145, 141 (1987)

    ADS  MathSciNet  Google Scholar 

  32. Le Bellac, M.: Thermal Field Theory. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  33. Lindner, F.: Perturbative Algebraic Quantum Field Theory at Finite Temperature. Ph.D. thesis, University of Hamburg (2013)

  34. Matsubara, T.: A new approach to quantum-statistical mechanics. Prog. Theor. Phys. 14, 351–378 (1955)

    ADS  MathSciNet  MATH  Google Scholar 

  35. McLerran, L.D.: Eleven lectures on the Physics of the Quark-Gluon Plasma (FNAL/C–84/101-T) (1985)

  36. Niemi, A.J., Semenoff, G.W.: Finite-temperature quantum field theory in Minkowski space. Ann. Phys. 152, 105–129 (1984)

    ADS  Google Scholar 

  37. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83 (1973)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions. 2. Commun. Math. Phys. 42, 281 (1975)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Parwani, R.R.: Resummation in a hot scalar field theory. Phys. Rev. D 45, 4695 (1992)

    ADS  Google Scholar 

  40. Prokopec, T., Schmidt, M.G., Weinstock, S.: Transport equations for chiral fermions to order h bar and electroweak baryogenesis. Part 1. Ann. Phys. 314, 208–265 (2004)

    ADS  MATH  Google Scholar 

  41. Prokopec, T., Schmidt, M.G., Weinstock, S.: Transport equations for chiral fermions to order h-bar and electroweak baryogenesis. Part II. Ann. Phys. 314, 267–320 (2004)

    ADS  MATH  Google Scholar 

  42. Radzikowski, M.J.: Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Schwinger, J.: Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407 (1961)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Steinmann, O.: Perturbation Expansions in Axiomatic Field Theory. Lecture Notes in Physics, vol. 11. Springer, Berlin (1971)

    Google Scholar 

  45. Umezawa, H., Matsumoto, H., Tachiki, M.: Thermo Field Dynamics and Condensed States. North-Holland, Amsterdam (1982)

    Google Scholar 

  46. Umezawa, H.: Advanced Field Theory. American Institute of Physics, New York (1993)

    Google Scholar 

  47. van Hove, L.: In: de Boer, J., Dal, E., Ulfbeck, O. (eds.) The Lesson of Quantum Theory. North-Holland, Amsterdam (1986)

    Google Scholar 

Download references

Acknowledgements

The work of J. Braga de Góes Vasconcellos is supported in part by the National Group of Mathematical Physics (GNFM—INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Pinamonti.

Additional information

Communicated by Karl-Henning Rehren.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Braga de Góes Vasconcellos, J., Drago, N. & Pinamonti, N. Equilibrium States in Thermal Field Theory and in Algebraic Quantum Field Theory. Ann. Henri Poincaré 21, 1–43 (2020). https://doi.org/10.1007/s00023-019-00859-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00859-3

Navigation