Skip to main content
Log in

Repeated Interaction Processes in the Continuous-Time Limit, Applied to Quadratic Fermionic Systems

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We study a class of Lindblad equations on finite-dimensional Fermionic systems. The model is obtained as the continuous-time limit of a repeated interaction process between Fermionic systems with quadratic Hamiltonians, a setup already used by Platini and Karevski for the one-dimensional XY-model. We prove a necessary and sufficient condition for the convergence to a unique stationary state, which is similar to the Kalman criterion in control theory. Several examples are treated, including a spin chain with interactions at both ends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Aschbacher, W.H., Pillet, C.-A.: Non-equilibrium steady states of the XY chain. J. Stat. Phys. 112, 1153–1175 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  2. Attal, S., Joye, A.: The Langevin equation for a quantum heat bath. J. Funct. Anal. 247(2), 253–288 (2007)

    Article  MathSciNet  Google Scholar 

  3. Attal, S., Joye, A., Pillet, C.-A. (eds.): Open Quantum Systems I, II, III, Volume 1880, 1881, 1882 of Lecture Notes in Mathematics. Springer, Berlin (2006)

    Google Scholar 

  4. Alicky, R., Lendi, R.: Quantum Dynamical Semigroups and Applications. Springer, Berlin (1987)

    Google Scholar 

  5. Attal, S., Pautrat, Y.: From repeated to continuous quantum interactions. Ann. H. Poincaré (Phys. Théor.) 7, 59–104 (2006)

    Article  MathSciNet  Google Scholar 

  6. Araki, H.: On the diagonalisation of a bilinear Hamiltonian by a Bogoliubov transformation. Publ. RIMS Kyoto Univ. Ser. A 4, 387–412 (1968)

    Article  Google Scholar 

  7. Burgarth, D., Chiribella, G., Giovannetti, V., Perinotti, Y., Yuasa, P.: Ergodic and mixing quantum channels in finite dimensions. New J. Phys. 15(7), 073045 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. Belton, A.C.R., Gnacik, M., Lindsay, J.M., Zhong, P.: Quasifree stochastic cocycles and quantum random walks. J. Stat. Phys. 176, 1–39 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bouten, L., Guta, M., Maasen, H.: Stochastic Schrödinger equations. J. Phys. A (2004). https://doi.org/10.1088/0305-4470/37/9/010

    Article  MATH  Google Scholar 

  10. Boulant, N., Havel, T.F., Pravia, M.A., Cory, D.G.: Robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points. Phys. Rev. A 67(4), 042322 (2003)

    Article  ADS  Google Scholar 

  11. Barouch, E., McCoy, B.M., et al.: Statistical mechanics of the XY model, I, II, III, IV. Phys. Rev. A (1970–1971)

  12. Baumgartner, B., Narnhofer, H.: The structures of state space concerning quantum dynamical semigroups. Rev. Math. Phys. 24(02), 1250001 (2012)

    Article  MathSciNet  Google Scholar 

  13. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2: Equilibrium States. Models in Quantum Statistical Mechanics. Texts and Monographs in Physics. Springer, Berlin (1996)

    Google Scholar 

  14. Carmichael, H.: Statistical Methods in Quantum Optics I: Master Equations and Fokker–Plank Equations. Springer, Berlin (1998)

    Google Scholar 

  15. Carlen, E., Maas, J.: Gradient flow and entropy inequalities for quantum markov semigroups with detailed balance. J. Funct. Anal. 273(5), 1810–1869 (2017)

    Article  MathSciNet  Google Scholar 

  16. Carbone, R., Pautrat, Y.: Irreducible decompositions and stationary states of quantum channels. Rep. Math. Phys. 77, 07 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Chrus̀ciński, D., Pascazio, S.: A brief history of the GKSL equation. Open syst. Inf. Dyn. 24(03) (2017)

  18. Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39, 91 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  19. Derezinski, J., De Roeck, W.: Extended weak coupling limit for Friedrichs Hamiltonians. J. Math. Phys. 48, 012103 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. Dereziński, J., Gérard, C.: Mathematics of Quantization and Quantum Fields. Cambridge Monographs on Mathematical Physics (2013)

  21. Dharhi, A.: A lindblad model for a spin chain coupled to heat baths. J. Phys. A 41, 275305 (2008)

    Article  MathSciNet  Google Scholar 

  22. Fagnola, F., Rebolledo, R.: Lectures on the qualitative analysis of quantum Markov semigroups. Quantum Probab. White Noise Anal. 15, 197–240 (2002)

    Article  MathSciNet  Google Scholar 

  23. Fagnola, F., Rebolledo, R.: Subharmonic projections for a quantum Markov semigroup. J. Math. Phys. 42, 1296 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. Fagnola, F., Rebolledo, R.: Algebraic condition for convergence of a quantum markov semigroup to a steady state. Infinite Dimens. Anal. Quantum Probab. Relat. 11(3), 467–474 (2008)

    Article  MathSciNet  Google Scholar 

  25. Frigerio, A.: Quantum dynamical semigroups and approach to equilibrium. Lett. Math. Phys. 2, 79–87 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  26. Fannes, M., Verbeure, A.: Gauge transformations and normal states of the CCR. J. Math. Phys. 16(10), 2086–2088 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  27. Frigerio, A., Verri, M.: Long time asymptotic properties of dynamical semigroups on w*-algebras. Math. Z. 180, 275–286 (1982)

    Article  MathSciNet  Google Scholar 

  28. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of N level systems. J. Math. Phys. 17(5), 821–825 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  29. Hamza, E., Joye, A.: Thermalization of fermionic quantum walkers. J. Stat. Phys. 166(6), 1365–1392 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Karevski, D., Platini, T.: Quantum non-equilibrium steady state induced by repeated interactions. Phys. Rev. Lett. 102, 207207 (2009)

    Article  ADS  Google Scholar 

  31. Kraus, C.V., Wolf, M.M., Cirac, J.I., Giedke, G.: Pairing in fermionic systems: a quantum-information perspective. Phys. Rev. A 79(1), 012306 (2009)

    Article  ADS  Google Scholar 

  32. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119–130 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  33. Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Oxf. Sci. Pub., Oxford (1995)

    MATH  Google Scholar 

  34. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  35. Platini, T.: Chaînes de spin quantiques hors de l’équilibre. Ph.D. Thesis, Université Henri Poincaré, Nancy-I (2008)

  36. Prosen, T.: Third quantization: a general method to solve master equations for quadratic open Fermi systems. New J. Phys. 10, 043026 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  37. Prosen, T., Zunkovic, B.: Exact solution of Markovian master equations for quadratic Fermi systems: thermal baths, open XY spin chains and non-equilibrium phase transition. New J. Phys. 12, 025016 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  38. Rivas, A., Huelga, S.: Open Quantum Systems. An Introduction. Springer, Berlin (2011)

    MATH  Google Scholar 

  39. Ticozzi, F., Viola, L.: Quantum Markovian subsystems: invariance, attractivity, and control. IEEE Trans. Autom. Control 53(9), 2048–2063 (2008)

    Article  MathSciNet  Google Scholar 

  40. Zumino, B.: Normal forms of complex matrices. J. Math. Phys. 3(5), 1055–1057 (1962)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank my advisor Stéphan Attal for introducing this subject to me and helping me throughout the redaction of this article and my co-advisor Claude-Alain Pillet for interesting remarks and discussions about Fermionic systems. I also thank the two anonymous referees for their very detailed work and numerous suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Andréys.

Additional information

Communicated by Alain Joye.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Work supported by ANR Project “StoQ” N\({}^\circ \)ANR-14-CE25-0003.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andréys, S. Repeated Interaction Processes in the Continuous-Time Limit, Applied to Quadratic Fermionic Systems. Ann. Henri Poincaré 21, 115–154 (2020). https://doi.org/10.1007/s00023-019-00852-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00852-w

Navigation