The Fermionic Signature Operator in the Exterior Schwarzschild Geometry

Abstract

The structure of the solution space of the Dirac equation in the exterior Schwarzschild geometry is analyzed. Representing the space-time inner product for families of solutions with variable mass parameter in terms of the respective scalar products, a so-called mass decomposition is derived. This mass decomposition consists of a single mass integral involving the fermionic signature operator as well as a double integral which takes into account the flux of Dirac currents across the event horizon. The spectrum of the fermionic signature operator is computed. The corresponding generalized fermionic projector states are analyzed.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Araki, H.: On quasifree states of \({\rm CAR}\) and Bogoliubov automorphisms. Publ. Res. Inst. Math. Sci. 6, 385–442 (1970/71)

  2. 2.

    Dappiaggi, C., Finster, F., Murro, S., Radici, E.: The fermionic signature operator in De Sitter space-time, arXiv:1902.09144 [math-ph] (2019)

  3. 3.

    Daudé, T.: Time-dependent scattering theory for charged Dirac fields on a Reissner–Nordström black hole. J. Math. Phys. 51(10), 102504–57 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Fewster, C.J., Lang, B.: Pure quasifree states of the Dirac field from the fermionic projector. Class. Quantum Grav. 32(9), 095001–30 (2015). arXiv:1408.1645 [math-ph]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Finster, F., Kamran, N.: Spinors on singular spaces and the topology of causal fermion systems. Mem. Am. Math. Soc. 259(1251), v+83 (2019). arXiv:1403.7885 [math-ph]

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Finster, F., Kamran, N., Smoller, J., Yau, S.-T.: Nonexistence of time-periodic solutions of the Dirac equation in an axisymmetric black hole geometry. Commun. Pure Appl. Math. 53(7), 902–929 (2000). gr-qc/9905047

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Finster, F., Kamran, N., Smoller, J., Yau, S.-T.: Decay rates and probability estimates for massive Dirac particles in the Kerr–Newman black hole geometry, Commun. Math. Phys. 230(2), 201–244 (2002). arXiv:gr-qc/0107094

    ADS  MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Finster, F., Kamran, N., Smoller, J., Yau, S.-T.: The long-time dynamics of Dirac particles in the Kerr–Newman black hole geometry. Adv. Theor. Math. Phys. 7(1), 25–52 (2003). arXiv:gr-qc/0005088

    MathSciNet  Article  Google Scholar 

  9. 9.

    Finster, F., Müller, O.: Lorentzian spectral geometry for globally hyperbolic surfaces. Adv. Theor. Math. Phys. 20(4), 751–820 (2016). arXiv:1411.3578 [math-ph]

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Finster, F., Murro, S., Röken, C.: The fermionic projector in a time-dependent external potential: mass oscillation property and Hadamard states. J. Math. Phys. 57(7), 072303 (2016). arXiv:1501.05522 [math-ph]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Finster, F., Murro, S., Röken, C.: The fermionic signature operator and quantum states in Rindler space-time. J. Math. Anal. Appl. 454(1), 385–411 (2017). arXiv:1606.03882 [math-ph]

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Finster, F., Reintjes, M.: A non-perturbative construction of the fermionic projector on globally hyperbolic manifolds I—space-times of finite lifetime. Adv. Theor. Math. Phys. 19(4), 761–803 (2015). arXiv:1301.5420 [math-ph]

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Finster, F., Reintjes, M.: A non-perturbative construction of the fermionic projector on globally hyperbolic manifolds II—space-times of infinite lifetime. Adv. Theor. Math. Phys. 20(5), 1007–1048 (2016). arXiv:1312.7209 [math-ph]

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Finster, F., Reintjes, M.: The fermionic signature operator and Hadamard states in the presence of a plane electromagnetic wave. Ann. Henri Poincaré 18(5), 1671–1701 (2017). arXiv:1609.04516 [math-ph]

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Finster, F., Reintjes, M.: The fermionic signature operator and space-time symmetries. Adv. Theor. Math. Phys. (2019). arXiv:1708.09643 [math-ph]

  16. 16.

    Goldberg, J.N., Macfarlane, A.J., Newman, E.T., Rohrlich, F., Sudarshan, E.C.G.: Spin-\(s\) spherical harmonics and \(^{-}\!\!\!\!\partial \). J. Math. Phys. 8, 2155–2161 (1967)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Melnyk, F.: Scattering on Reissner-Nordstrøm metric for massive charged spin \(1/2\) fields. Ann. Henri Poincaré 4(5), 813–846 (2003)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Nicolas, J.-P.: Scattering of linear Dirac fields by a spherically symmetric black hole. Ann. Inst. H. Poincaré Phys. Théor. 62(2), 145–179 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Niky Kamran for helpful discussions. We are grateful to the referees for valuable suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Felix Finster.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the DFG research grant “Dirac Waves in the Kerr Geometry: Integral Representations, Mass Oscillation Property and the Hawking Effect”.

Communicated by Karl-Henning Rehren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Finster, F., Röken, C. The Fermionic Signature Operator in the Exterior Schwarzschild Geometry. Ann. Henri Poincaré 20, 3389–3418 (2019). https://doi.org/10.1007/s00023-019-00837-9

Download citation