The Structure of State Transition Graphs in Systems with Return Point Memory: I. General Theory

  • Muhittin MunganEmail author
  • M. Mert Terzi


We consider the athermal quasi-static dynamics (AQS) of disordered systems driven by an external field. Our interest is in an automaton description (AQS-A) that represents the AQS dynamics via a graph of state transitions triggered by the field and in the presence of return-point-memory (RPM) property, a tendency for the system to return to the same microstate upon cycling driving. The existence of three conditions, (1) a partial order on the set of configuration; (2) a no-passing property; and (3) an adiabatic response to monotonously changing fields, implies RPM. When periodically driven, such systems settle into a cyclic response after a transient of at most one period. While sufficient, conditions (1)–(3) are not necessary. We show that the AQS dynamics provides a more selective partial order which, due to its explicit connection to hysteresis loops, is a natural choice for establishing the RPM property. This enables us to consider AQS-A exhibiting RPM without necessarily possessing the no-passing property. We call such automata \(\ell \)AQS-A and work out the structure of their state transition graphs. We find that the RPM property constrains the intra-loop structure of hysteresis loops, namely its hierarchical organization into sub-loops, but not the inter-loop structure. We prove that the topology of the intra-loop structure can be represented as an ordered tree and show that the corresponding state transition graph is planar. On the other hand, the RPM property does not significantly restrict the inter-loop transitions. A system exhibiting RPM and subject to periodic forcing can undergo a large number of transient cycles before settling into a periodic response. Such systems can even exhibit subharmonic response.

Mathematics Subject Classification

Primary 82D30 Secondary 82C44 



The authors would like to thank M. Işeri and D.C. Kaspar for many fruitful exchanges. They also acknowledge discussions with B. Behringer, A. Bovier, K. Dahmen, N. Keim, J. Krug, C. Maloney, A. A. Middleton, S. Nagel, A. Rosso, S. Sastry, K. Sekimoto, J. Sethna, D. Vandembroucq, T. A. Witten, and A. Yılmaz. Many of these took place during the Memory Formation in Matter program of KITP, and the authors thank KITP for its kind hospitality.


  1. 1.
    Fleming, R.M., Schneemeyer, L.F.: Observation of a pulse-duration memory effect in \({\rm K}_{0.30}{\rm MoO}_{3}\). Phys. Rev. B 33, 2930–2932 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    Pierce, M.S., Moore, R.G., Sorensen, L.B., Kevan, S.D., Hellwig, O., Fullerton, E.E., Kortright, J.B.: Quasistatic X-ray speckle metrology of microscopic magnetic return-point memory. Phys. Rev. Lett. 90, 175502 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Pierce, M.S., Buechler, C.R., Sorensen, L.B., Turner, J.J., Kevan, S.D., Jagla, E.A., Deutsch, J.M., Mai, T., Narayan, O., Davies, J.E., Liu, K., Dunn, J.H., Chesnel, K.M., Kortright, J.B., Hellwig, O., Fullerton, E.E.: Disorder-induced microscopic magnetic memory. Phys. Rev. Lett. 94, 017202 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Pierce, M.S., Buechler, C.R., Sorensen, L.B., Kevan, S.D., Jagla, E.A., Deutsch, J.M., Mai, T., Narayan, O., Davies, J.E., Liu, Kai, Zimanyi, G.T., Katzgraber, H.G., Hellwig, O., Fullerton, E.E., Fischer, P., Kortright, J.B.: Disorder-induced magnetic memory: experiments and theories. Phys. Rev. B 75, 144406 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    Hauet, T., Guenther, C.M., Pfau, B., Schabes, M.E., Thiele, J.U., Rick, R.L., Fischer, P., Eisebitt, S., Hellwig, O.: Direct observation of field and temperature induced domain replication in dipolar coupled perpendicular anisotropy films. Phys. Rev. B 77, 184421 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    Pine, D.J., Gollub, J.P., Brady, J.F., Leshansky, A.M.: Chaos and threshold for irreversibility in sheared suspensions. Nature 438, 997–1000 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Corte, L., Chaikin, P.M., Gollub, J.P., Pine, D.J.: Random organization in periodically driven systems. Nat. Phys. 4(5), 420 (2008)CrossRefGoogle Scholar
  8. 8.
    Paulsen, J.D., Keim, N.C., Nagel, S.R.: Multiple transient memories in experiments on sheared non-Brownian suspensions. Phys. Rev. Lett 113, 068301 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    Toiya, M., Stambaugh, J., Losert, W.: Transient and oscillatory granular shear flow. Phys. Rev. Lett. 93(8), 088001 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    Mueggenburg, N.W.: Behavior of granular materials under cyclic shear. Phys. Rev. E 71(3), 031301 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Ren, J., Dijksman, J.A., Behringer, R.P.: Reynolds pressure and relaxation in a sheared granular system. Phys. Rev. Lett. 110(1), 018302 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    Haw, M.D., Poon, W.C.K., Pusey, P.N., Hebraud, P., Lequeux, F.: Colloidal glasses under shear strain. Phys. Rev. E 58(4), 4673 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Petekidis, G., Moussaid, A., Pusey, P.N.: Rearrangements in hard-sphere glasses under oscillatory shear strain. Phys. Rev. E 66(5), 051402 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    Lundberg, M., Krishan, K., Xu, N., O’Hern, C.S., Dennin, M.: Reversible plastic events in amorphous materials. Phys. Rev. E 77, 041505 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    Tang, C., Wiesenfeld, K., Bak, P., Coppersmith, S., Littlewood, P.: Phase organization. Phys. Rev. Lett. 58, 1161–1164 (1987)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    Coppersmith, S.N., Littlewood, P.B.: Pulse-duration memory effect and deformable charge-density waves. Phys. Rev. B 36, 311–317 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    Dahmen, K.A., Ben-Zion, Y., Uhl, J.T.: Micromechanical model for deformation in solids with universal predictions for stress–strain curves and slip avalanches. Phys. Rev. Lett. 102, 175501 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Keim, N.C., Nagel, S.R.: Generic transient memory formation in disordered systems with noise. Phys. Rev. Lett. 107, 010603 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    Libal, A., Reichhardt, C., Olson Reichhardt, C.J.: Hysteresis and return-point memory in colloidal artificial spin ice systems. Phys. Rev. E 86, 021406 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Keim, N.C., Paulsen, J.D., Nagel, S.R.: Multiple transient memories in sheared suspensions: robustness, structure, and routes to plasticity. Phys. Rev. E 88, 032306 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Fiocco, D., Foffi, G., Sastry, S.: Encoding of memory in sheared amorphous solids. Phys. Rev. Lett. 112, 025702 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    Fiocco, D., Foffi, G., Sastry, S.: Memory effects in schematic models of glasses subjected to oscillatory deformation. J. Phys. Condens. Matter 27, 194130 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Regev, I., Weber, J., Reichhardt, C., Dahmen, K.A., Lookman, T.: Reversibility and criticality in amorphous solids. Nat. Commun. 6, 8805 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    Lin, J., Gueudré, T., Rosso, A., Wyart, M.: Criticality in the approach to failure in amorphous solids. Phys. Rev. Lett. 115, 168001 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Leishangthem, P., Parmar, A.D.S., Sastry, S.: The yielding transition in amorphous solids under oscillatory shear deformation. Nat. Commun. 8, 14653 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Keim, N.C., Paulsen, J., Zeravcic, Z., Sastry, S., Nagel, S.R.: Memory formation in matter (2018). arXiv preprint arXiv:1810.08587
  27. 27.
    Barker, J.A., Schreiber, D.E., Huth, B.G., Everett, D.H.: Magnetic hysteresis and minor loops: models and experiments. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 386, 251–261 (1983)ADSCrossRefGoogle Scholar
  28. 28.
    Sethna, J.P., Dahmen, K., Kartha, S., Krumhansl, J.A., Roberts, B.W., Shore, J.D.: Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations. Phys. Rev. Lett. 70, 3347 (1993)ADSCrossRefGoogle Scholar
  29. 29.
    Sethna, J.P., Dahmen, K.A., Myers, C.R.: Crackling noise. Nature 410, 242–250 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    Sethna, J.P., Dahmen, K.A., Perkovic, O.: Random field ising models of hysteresis. In: Bertotti, G., Mayergoyz, I. (eds.) The Science of Hysteresis, vol. 2, pp. 107–179. Academic Press, New York (2006)CrossRefGoogle Scholar
  31. 31.
    Middleton, A.A.: Asymptotic uniqueness of the sliding state for charge-density waves. Phys. Rev. Lett. 68, 670–673 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    Malandro, D.L., Lacks, D.J.: Relationships of shear-induced changes in the potential energy landscape to the mechanical properties of ductile glasses. J. Chem. Phys. 110, 4593–4601 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    Maloney, C.E., Lemaître, A.: Amorphous systems in athermal, quasistatic shear. Phys. Rev. E 74, 016118 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    Deutsch, J.M., Dhar, A., Narayan, O.: Return to return point memory. Phys. Rev. Lett. 92, (2004)Google Scholar
  35. 35.
    Katzgraber, H.G., Zimanyi, G.T.: Hysteretic memory effects in disordered magnets. Phys. Rev. B 74, 020405 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    Han, Y., Shokef, Y., Alsayed, A.M., Yunker, P., Lubensky, T.C., Yodh, A.G.: Geometric frustration in buckled colloidal monolayers. Nature 456, 898–903 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    Gilbert, I., Chern, G.-W., Fore, B., Lao, Y., Zhang, S., Nisoli, C., Schiffer, P.: Direct visualization of memory effects in artificial spin ice. Phys. Rev. B 92, 104417 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Keim, N.C., Hass, J., Kroger, B., Wieker, D.: Return-point memory in an amorphous solid (2018). arXiv preprint arXiv:1809.08505
  39. 39.
    Deutsch, J.M., Narayan, O.: Subharmonics and aperiodicity in hysteresis loops. Phys. Rev. Lett. 91, 200601 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    Lavrentovich, M.O., Liu, A.J., Nagel, S.R.: Period proliferation in periodic states in cyclically sheared jammed solids. Phys. Rev. E 96, 020101 (2017)ADSCrossRefGoogle Scholar
  41. 41.
    Fukuyama, H., Lee, P.A.: Dynamics of the charge-density wave. I. impurity pinning in a single chain. Phys. Rev. B 17, 535 (1978)ADSCrossRefGoogle Scholar
  42. 42.
    Lee, P.A., Rice, T.M.: Electric field depinning of charge density waves. Phys. Rev. B 19, 3970 (1979)ADSCrossRefGoogle Scholar
  43. 43.
    Kaspar, D.C., Mungan, M.: Subthreshold behavior and avalanches in an exactly solvable charge density wave system. EPL 103, 46002 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    Kaspar, D.C., Mungan, M.: Exact results for a toy model exhibiting dynamic criticality. Ann. Henri Poincaré 16, 2837–2879 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Terzi, M.M., Mungan, M.: The structure of state transition graphs in hysteresis models with return point memory. II. Applications (in preparation) (2018)Google Scholar
  46. 46.
    Magni, A., Basso, V.: Study of metastable states in the random-field ising model. J. Mag. Mag. Mat. 290, 460–463 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    Bertotti, G., Bortolotti, P., Magni, A., Basso, V.: Topological and energetic aspects of the random-field Ising model. J. Appl. Phys. 101, 09D508 (2007)CrossRefGoogle Scholar
  48. 48.
    Bortolotti, P., Basso, V., Magni, A., Bertotti, G.: Oriented graph structure of local energy minima in the random-field ising model. Physica B 403, 398–401 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für angewandte MathematikBonn UniversityBonnGermany
  2. 2.Physics DepartmentCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations