Skip to main content
Log in

\(L_p\)-Spectrum and Lieb–Thirring Inequalities for Schrödinger Operators on the Hyperbolic Plane

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

This paper deals with the \(L_p\)-spectrum of Schrödinger operators on the hyperbolic plane. We establish Lieb–Thirring-type inequalities for discrete eigenvalues and study their dependence on p. Some bounds on individual eigenvalues are derived as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramov, A.A., Aslanyan, A., Davies, E.B.: Bounds on complex eigenvalues and resonances. J. Phys. A 34(1), 57–72 (2001)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. In: National Bureau of Standards Applied Mathematics Series, vol. 55. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. (1964)

  3. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction, p. 223. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  4. Bögli, S.: Schrödinger operator with non-zero accumulation points of complex eigenvalues. Commun. Math. Phys. 352(2), 629–639 (2017)

    Article  MATH  ADS  Google Scholar 

  5. Borichev, A., Golinskii, L., Kupin, S.: A Blaschke-type condition and its application to complex Jacobi matrices. Bull. Lond. Math. Soc. 41(1), 117–123 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borthwick, D.: Spectral theory of infinite-area hyperbolic surfaces. In: Progress in Mathematics, vol. 256, Birkhäuser Boston Inc, Boston (2007)

  7. Calderón, A.-P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Davies, E.B.: Heat kernels and spectral theory. In: Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge (1989)

  9. Davies, E.B., Simon, B., Taylor, M.: \(L^p\) spectral theory of Kleinian groups. J. Funct. Anal. 78(1), 116–136 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Demuth, M., Hansmann, M., Katriel, G.: On the discrete spectrum of non-selfadjoint operators. J. Funct. Anal. 257(9), 2742–2759 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Demuth, M., Hansmann, M., Katriel, G.: Eigenvalues of non-selfadjoint operators: a comparison of two approaches. In: Mathematical Physics, Spectral Theory and Stochastic Analysis, Operator Theory: Advances and Applications, vol. 232, Birkhäuser/Springer Basel AG, Basel, pp. 107–163 (2013)

  12. Demuth, M., Hansmann, M., Katriel, G.: Lieb–Thirring type inequalities for Schrödinger operators with a complex-valued potential. Integral Equ. Oper. Theory 75(1), 1–5 (2013)

    Article  MATH  Google Scholar 

  13. Demuth, M., Katriel, G.: Eigenvalue inequalities in terms of Schatten norm bounds on differences of semigroups, and application to Schrödinger operators. Ann. Henri Poincaré 9(4), 817–834 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Elstrodt, J.: Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. I. Math. Ann. 203, 295–300 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elstrodt, J.: Die Resolvente zum Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene. II. Math. Z. 132, 99–134 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. Enblom, A.: Estimates for eigenvalues of Schrödinger operators with complex-valued potentials. Lett. Math. Phys. 106(2), 197–220 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Frank, R.L.: Eigenvalue bounds for Schrödinger operators with complex potentials. Bull. Lond. Math. Soc. 43(4), 745–750 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Frank, R.L.: Eigenvalue bounds for Schrödinger operators with complex potentials. III. Trans. Am. Math. Soc. 370(1), 219–240 (2018)

    Article  MATH  Google Scholar 

  19. Frank, R.L., Laptev, A., Lieb, E.H., Seiringer, R.: Lieb–Thirring inequalities for Schrödinger operators with complex-valued potentials. Lett. Math. Phys. 77(3), 309–316 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Frank, R.L., Laptev, A., Seiringer, R.: A sharp bound on eigenvalues of Schrödinger operators on the halfline with complex-valued potentials. In: Spectral Theory and Analysis, Operator Theory: Advances and Applications, vol. 214, Birkhäuser Verlag, Basel, pp. 39–44 (2011)

  21. Frank, R.L., Sabin, J.: Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates. Am. J. Math. 139(6), 1649–1691 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frank, R.L., Simon, B.: Eigenvalue bounds for Schrödinger operators with complex potentials. II. J. Spectr. Theory 7(3), 633–658 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators. Operator Theory: Advances and Applications, vol. 49, Birkhäuser Verlag, Basel (1990)

  24. Gohberg, I., Krein, M.G.: Introduction to the Theory of Linear Nonselfadjoint Operators. American Mathematical Society, Providence (1969)

    MATH  Google Scholar 

  25. Golinskii, L., Kupin, S.: On complex perturbations of infinite band Schrödinger operators. Methods Funct. Anal. Topol. 21(3), 237–245 (2015)

    MATH  Google Scholar 

  26. Hansmann, M.: An eigenvalue estimate and its application to non-selfadjoint Jacobi and Schrödinger operators. Lett. Math. Phys. 98(1), 79–95 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. Hansmann, M.: Perturbation determinants in Banach spaces—with an application to eigenvalue estimates for perturbed operators. Math. Nachr. 289(13), 1606–1625 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hansmann, M.: Some remarks on upper bounds for Weierstrass primary factors and their application in spectral theory. Complex Anal. Oper. Theory 11(6), 1467–1476 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hebey, E., Robert, F.: Sobolev spaces on manifolds. In: Handbook of Global Analysis, vol. 1213, Elsevier Sci. B. V., Amsterdam, pp. 375–415 (2008)

  30. Hempel, R., Voigt, J.: The spectrum of a Schrödinger operator in \(L_p({ R}^\nu )\) is \(p\)-independent. Commun. Math. Phys. 104(2), 243–250 (1986)

    Article  MATH  ADS  Google Scholar 

  31. Kato, T.: Perturbation theory for linear operators. In: Classics in Mathematics (Reprint of the 1980 edition), Springer, Berlin (1995)

  32. König, H.: Eigenvalue distribution of compact operators. In: Operator Theory: Advances and Applications, vol. 16, Birkhäuser Verlag, Basel (1986)

  33. König, H., Retherford, J., Tomczak-Jaegermann, N.: On the eigenvalues of \((p,\,2)\)-summing operators and constants associated with normed spaces. J. Funct. Anal. 37(1), 88–126 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kunstmann, P.C.: Heat kernel estimates and \(L^p\) spectral independence of elliptic operators. Bull. Lond. Math. Soc. 31(3), 345–353 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Laptev, A., Safronov, O.: Eigenvalue estimates for Schrödinger operators with complex potentials. Commun. Math. Phys. 292(1), 29–54 (2009)

    Article  MATH  ADS  Google Scholar 

  36. Levin, D., Solomyak, M.: The Rozenblum–Lieb–Cwikel inequality for Markov generators. J. Anal. Math. 71, 173–193 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lieb, E.H., Thirring, W.: Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett. 35, 687–689 (1975)

    Article  ADS  Google Scholar 

  38. Lieb, E.H., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to sobolev inequalities. In: Essays in Honor of Valentine Bargmann, Studies in Mathematical Physics, Princeton (1976)

  39. Liskevich, V., Vogt, H.: On \(L^p\)-spectra and essential spectra of second-order elliptic operators. Proc. Lond. Math. Soc. 80(3), 590–610 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Ouhabaz, E.M., Poupaud, C.: Remarks on the Cwikel–Lieb–Rozenblum and Lieb–Thirring estimates for Schrödinger operators on Riemannian manifolds. Acta Appl. Math. 110(3), 1449–1459 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pietsch, A.: Eigenvalues and \(s\)-numbers. Mathematik und ihre Anwendungen in Physik und Technik [Mathematics and its Applications in Physics and Technology], vol. 43, Akademische Verlagsgesellschaft Geest & Portig K.-G, Leipzig (1987)

  42. Pietsch, A., Triebel, H.: Interpolationstheorie für Banachideale von beschränkten linearen Operatoren. Stud. Math. 31, 95–109 (1968)

    Article  MATH  Google Scholar 

  43. Pommerenke, Ch.: Boundary behaviour of conformal maps. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer, Berlin (1992)

  44. Safronov, O.: Estimates for eigenvalues of the Schrödinger operator with a complex potential. Bull. Lond. Math. Soc. 42(3), 452–456 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Safronov, O.: On a sum rule for Schrödinger operators with complex potentials. Proc. Am. Math. Soc. 138(6), 2107–2112 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7(3), 447–526 (1982)

    Article  MATH  Google Scholar 

  47. Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  48. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton (1971)

  49. Strichartz, R.S.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52(1), 48–79 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  50. Sturm, K.-T.: On the \(L^p\)-spectrum of uniformly elliptic operators on Riemannian manifolds. J. Funct. Anal. 118(2), 442–453 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Taylor, M.E.: \(L^p\)-estimates on functions of the Laplace operator. Duke Math. J. 58(3), 773–793 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  52. Terras, A.: Harmonic Analysis on Symmetric Spaces–Euclidean Space, the Sphere, and the Poincaré Upper Half-plane, 2nd edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  53. Triebel, H.: Theory of function spaces. II. In: Monographs in Mathematics, vol. 84, Birkhäuser Verlag, Basel (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Hansmann.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project Number HA 7732/2-1. I would like to thank Hendrik Vogt for pointing me to the references [34, 39].

Appendix

Appendix

1.1 A.1. Operators, Spectra and Perturbations

We introduce terminology and collect some standard results on operators and spectra. As references see, e.g., [23, 24, 31].

(a) X and Y denote complex Banach spaces, and \(\mathcal {B}(X,Y)\) denotes the algebra of all bounded linear operators from X to Y. As usual, we set \(\mathcal {B}(X):=\mathcal {B}(X,X)\). The spectrum of a closed operator Z in X will be denoted by \(\sigma (Z)\) and \(\varrho (Z):={{\mathbb {C}}}{\setminus } \sigma (Z)\) denotes its resolvent set. An isolated eigenvalue \(\lambda \) of Z will be called discrete if its algebraic multiplicity \(m(\lambda ):=\dim ({\text {Ran}}(P_Z(\lambda ))\) is finite. Here,

$$\begin{aligned} P_Z(\lambda )=\frac{1}{2\pi i} \int _\gamma (\mu -Z)^{-1} \hbox {d}\mu \end{aligned}$$

denotes the Riesz projection of Z with respect to \(\lambda \) (and \(\gamma \) is a counterclockwise oriented circle centered at \(\lambda \), with sufficiently small radius). The set of all discrete eigenvalues is called the discrete spectrum \(\sigma _d(Z)\). The essential spectrum \(\sigma _\mathrm{ess}(Z)\) is defined as the set of all \(\lambda \in {{\mathbb {C}}}\), where \(\lambda -Z\) is not a Fredholm operator. We have \(\sigma _\mathrm{ess}(Z) \cap \sigma _d(Z) = \emptyset \) and if \(\Omega \subset {{\mathbb {C}}}{\setminus } \sigma _\mathrm{ess}(Z)\) is a connected component and \(\Omega \cap \varrho (Z) \ne \emptyset \), then \(\Omega \cap \sigma (Z) \subset \sigma _d(Z)\). Moreover, each point on the topological boundary of \(\sigma (Z)\) either is a discrete eigenvalue or a point in the essential spectrum. The discrete eigenvalues of Z can accumulate at the essential spectrum only. Finally, the spectral mapping theorem for the resolvent says that for \(a \in \varrho (Z)\) we have

$$\begin{aligned} \sigma ((Z-a)^{-1}) {\setminus } \{0\} = \{ (\lambda -a)^{-1}: \lambda \in \sigma (Z)\}. \end{aligned}$$

A similar identity holds for the essential and the discrete spectra as well. In the latter case, the algebraic multiplicities of \(\lambda \in \sigma _d(Z)\) and \((\lambda -a)^{-1} \in \sigma _d((Z-a)^{-1})\) coincide.

(b) In this paper, the sum \(Z+M\) of two closed operators ZM in X will always denote the usual operator sum defined on \({\text {Dom}}(Z) \cap {\text {Dom}}(M)\) (and the product ZM is defined on \(\{ f \in {\text {Dom}}(M): Mf \in {\text {Dom}}(Z)\}\)). The operator M is called Z-compact if \({\text {Dom}}(Z)\subset {\text {Dom}}(M)\) and \(M(Z-a)^{-1}\) is compact for one (hence all) \(a \in \varrho (Z)\). If this is the case, the sum \(Z+M\) is closed and for \(a \in \varrho (Z+M) \cap \varrho (Z)\) also the resolvent difference

$$\begin{aligned} (Z+M-a)^{-1} - (Z-a)^{-1} = -\,(Z+M-a)^{-1}M(Z-a)^{-1} \end{aligned}$$

is compact. In particular, Weyl’s theorem on the invariance of the essential spectrum under compact perturbations and the spectral mapping theorem imply that \(\sigma _\mathrm{ess}(Z)=\sigma _\mathrm{ess}(Z+M)\).

(c) If Z is closed and densely defined \(Z^*\) denotes its adjoint (see [31, Sections III.5.5 and III.6.6]). The spectrum \(\sigma (Z^*)\) is the mirror image of \(\sigma (Z)\) with respect to the real axis and \([(\lambda -Z)^{-1}]^*=({{\overline{\lambda }}} - Z^*)^{-1}\). Moreover, \(\lambda \in \sigma _d(Z)\) iff \({\overline{\lambda }} \in \sigma _d(Z^*)\) and the respective algebraic multiplicities coincide. Finally, we note that if M is another operator in X and ZM is densely defined, then \((ZM)^* \supset M^*Z^*,\) with equality if \(Z \in \mathcal {B}(X)\).

1.2 A.2. \(l_r\)-Ideals and Perturbation Determinants

We recall some results concerning the construction of perturbation determinants on Banach spaces. The main reference is [27], see also [32, 41].

Let X denote a complex Banach space and let \(r>0\). A quasi-normed subspace \(({\mathcal {I}}, \Vert .\Vert _{{\mathcal {I}}})\) of \(\mathcal {B}(X)\) is called an \(l_r\)-ideal (in \(\mathcal {B}(X)\)) with eigenvalue constant\(\mu _r>0\) if the following holds:

  1. (1)

    The finite rank operators, denoted by \( {\mathcal {F}}(X)\), are dense in \({\mathcal {I}}\).

  2. (2)

    \(\Vert L\Vert \le \Vert L\Vert _{{\mathcal {I}}}\) for all \(L \in {\mathcal {I}}\).

  3. (3)

    If \(L \in {\mathcal {I}}\) and \(A,B \in \mathcal {B}(X)\), then \(ALB \in {\mathcal {I}}\) and

    $$\begin{aligned} \Vert ALB\Vert _{{\mathcal {I}}} \le \Vert A\Vert \Vert L\Vert _{{\mathcal {I}}} \Vert B\Vert . \end{aligned}$$
  4. (4)

    For every \(L \in {\mathcal {I}}\), one has \(\Vert (\lambda _j(L))\Vert _{l_r} \le \mu _r \Vert L\Vert _{{\mathcal {I}}}\). Here, \((\lambda _j(L))\) denotes the sequence of discrete eigenvalues of L, counted according to their algebraic multiplicity (note that by (1) and (2) each \(L \in {\mathcal {I}}\) is compact).

In the present paper, we will need only two particular \(l_r\)-ideals, which we introduce in the following two examples.

Example A.1

Let \(\mathcal {H}\) denote a complex Hilbert space and let \(r>0\). The Schatten–von Neumann classes\({\mathcal {S}}_r(\mathcal {H})\) are defined by

$$\begin{aligned} {\mathcal {S}}_r(\mathcal {H}) = \{ K \in \mathcal {B}(X) : K \text { is compact and } (s_n(K)) \in l_r\}. \end{aligned}$$

Here, \((s_n(K))\) denotes the sequence of singular values of K. Equipped with the (quasi-) norm \( \Vert K\Vert _{{\mathcal {S}}_r} := \Vert (s_n(K))\Vert _{l_r}\) this class is an \(l_r\)-ideal with eigenvalue constant \(\mu _r=1\).

Example A.2

Let \(1 \le q \le p < \infty \). An operator \(L \in \mathcal {B}(X)\) is called (pq)-summing if there exists \(\varrho >0\) such that for all finite systems of elements \(x_1,\ldots ,x_n \in X\) one has

$$\begin{aligned} \left( \sum _{k=1}^n \Vert Lx_k\Vert ^p \right) ^{1/p} \le \varrho \sup _{x' \in X', \Vert x'\Vert \le 1} \left( \sum _{k=1}^n |x'(x_k)|^q\right) ^{1/q}. \end{aligned}$$

We denote the infimum of all such \(\varrho >0\) by \(\Vert L\Vert _{\Pi _{p,q}}\) and the class of all such operators by \(\Pi _{p,q}(X)\). In the special case \(p=q\), we speak of p-summing operators and write \(\Pi _{p}(X)\). We note that for \(1\le q_1 \le q_0 \le p_0 \le p_1 < \infty \) we have \(\Pi _{p_0,q_0}(X) \subset \Pi _{p_1,q_1}(X)\) and

$$\begin{aligned} \Vert L\Vert _{\Pi _{p_1,q_1}} \le \Vert L\Vert _{\Pi _{p_0,q_0}}, \qquad L \in \Pi _{p_0,q_0}(X). \end{aligned}$$
(61)

Moreover, if \(\mathcal {H}\) is a complex Hilbert space, then for \(r \ge 2\) we have \(\Pi _{r,2}(\mathcal {H})={\mathcal {S}}_r(\mathcal {H})\) and the corresponding norms coincide. Concerning the above properties of an \(l_r\)-ideal we note that \(\Pi _{p,q}(X)\) always satisfies (2) and (3), and it satisfies (1) if \(X'\) has the approximation property and is reflexive, see [27, Remark 5.4]. For such X, we can use known information on the eigenvalue distribution of the (pq)-summing operators to make the following statements:

(a) \((\Pi _p(X),\Vert .\Vert _{\Pi _p})\) is an \(l_{\max (p,2)}\)-ideal with eigenvalue constant \(\mu _{\max (p,2)} = 1\).

(b) If \(p>2\), then the eigenvalues of \(L \in \Pi _{p,2}(X)\) are in the weak space \(l_{p,\infty }({{\mathbb {N}}})\), see [33]. More precisely, if the eigenvalues are denoted decreasingly \(|\lambda _1(L)| \ge |\lambda _2(L)| \ge \ldots \) (where each eigenvalue is counted according to its algebraic multiplicity and the sequence is extended by 0 if there are only finitely many eigenvalues), then

$$\begin{aligned} \sup _{j \in {{\mathbb {N}}}} |\lambda _j(L)| j^{1/p} \le 2e \Vert L\Vert _{\Pi _{p,2}}. \end{aligned}$$

In particular, this implies that for \(q>p\) and \(n \in {{\mathbb {N}}}\)

$$\begin{aligned} \sum _{j=1}^n |\lambda _j(L)|^q = \sum _{j=1}^n \left( |\lambda _j(L)| j^{1/p}\right) ^q j^{-q/p} \le \left( 2e \Vert L\Vert _{\Pi _{p,2}}\right) ^q \sum _{j=1}^\infty j^{-q/p}. \end{aligned}$$

Hence, we see that \(\Pi _{p,2}(X)\) is an \(l_q\)-ideal for every \(q>p>2\), with eigenvalue constant \(\mu _q^q= (2e)^q \sum _{j=1}^\infty j^{-q/p}\). Moreover, by (61) we see that for \(p > r \ge 2\) also \(\Pi _{p,r}(X)\) is an \(l_q\)-ideal for every \(q>p\), with the same constant \(\mu _q\) as before.

The \(l_r\)-ideals can be used to construct perturbation determinants on Banach spaces: First, for a finite rank operator \(F \in \mathcal F(X)\) and \(r>0\) we define

$$\begin{aligned} {\det }_r(I-F):= \prod _j \left( (1-\lambda _j(F))\exp \left( \sum _{k=1}^{\lceil r \rceil -1} \frac{\lambda _j^k(F)}{k} \right) \right) . \end{aligned}$$
(62)

Now, one can show that for every \(l_r\)-ideal \(({\mathcal {I}}, \Vert .\Vert _{{\mathcal {I}}})\) there exists a unique continuous function \({\det }_{r,{\mathcal {I}}}(I-.) : ({\mathcal {I}},\Vert .\Vert _{{\mathcal {I}}}) \rightarrow {{\mathbb {C}}}\) that coincides with \(\det _r(I-.)\) on the finite rank operators \({\mathcal {F}}(X)\). Moreover, there exists \(\Gamma _r > 0\) such that for all \(L \in {\mathcal {I}}\) we have

$$\begin{aligned} |{\det }_{r,{\mathcal {I}}}(I-L)| \le \exp \left( \mu _r^r \Gamma _r \Vert L\Vert _{{\mathcal {I}}}^r\right) , \end{aligned}$$

where \(\mu _r\) denotes the eigenvalue constant of \({\mathcal {I}}\). Finally, if \(A \in \mathcal {B}(X)\) and \(K \in {\mathcal {I}}\), we define the r-regularized perturbation determinantd of A by K (with respect to \({\mathcal {I}}\)) as follows:

$$\begin{aligned} d: \varrho (A) \ni \lambda \mapsto {\det }_{r,{\mathcal {I}}}(I-K(\lambda -A)^{-1}). \end{aligned}$$

Then, the following holds: (i) d is analytic on \(\varrho (A)\). (ii) \(\lim _{|\lambda | \rightarrow \infty } d(\lambda )=1.\) (iii) For \(\lambda \in \varrho (A)\), we have

$$\begin{aligned} |d(\lambda )| \le \exp \left( \mu _r^r \Gamma _r \Vert K(\lambda -A)^{-1}\Vert _{{\mathcal {I}}}^r\right) . \end{aligned}$$

(iv) \(d(\lambda )=0\) iff \(\lambda \in \sigma (A+K)\). (v) If \(\lambda \in \varrho (A) \cap \sigma _d(A+K)\), then its algebraic multiplicity as an eigenvalue of \(A+K\) coincides with its order as a zero of d.

1.3 A.3. Complex Interpolation

We review some aspects of Calderon’s method of complex interpolation, see [7] or [3].

Let \( S := \{ z \in {{\mathbb {C}}}: 0 \le {\text {Re}}(z) \le 1\}\) and let (XY) denote an interpolation couple of complex Banach spaces (i.e., X and Y are complex Banach spaces continuously embedded in a topological vector space V). Then, \(X \cap Y\) and \(X+ Y\) become Banach spaces when equipped with the norms \(\Vert z\Vert _{X \cap Y} = \max (\Vert z\Vert _X,\Vert z\Vert _Y)\) and \(\Vert z\Vert _{X+Y}=\inf \{ \Vert x\Vert _X + \Vert y\Vert _Y : z = x+y, x \in X, y \in Y\}\), respectively. We denote by \(\mathcal G(X,Y)\) the vector space of all functions \(f: S \rightarrow X+Y\) which satisfy the following properties:

  • f is holomorphic in the interior of S,

  • \(f \in C_b(S;X+Y)\), i.e., f is continuous and bounded on S,

  • \(t \mapsto f(it) \in C_b({{\mathbb {R}}};X)\) and \(t \mapsto f(1+it) \in C_b({{\mathbb {R}}};Y)\).

Then, \({\mathcal {G}}(X,Y)\) becomes a Banach space with the norm

$$\begin{aligned} \Vert f\Vert _{{\mathcal {G}}(X,Y)}:= \max \left( \sup _{t \in {{\mathbb {R}}}} \Vert f(it)\Vert _X, \sup _{t \in {{\mathbb {R}}}} \Vert f(1+it)\Vert _Y\right) . \end{aligned}$$

For \(0< \theta < 1\), the complex interpolation spaces\([X,Y]_\theta \) are introduced as follows:

$$\begin{aligned}{}[X,Y]_\theta = \{ f(\theta ) : f \in {\mathcal {G}}(X,Y)\}, \quad \Vert z\Vert _{[X,Y]_\theta } = \inf _{f \in {\mathcal {G}}(X,Y), f(\theta )=z} \Vert f\Vert _{{\mathcal {G}}(X,Y)}. \end{aligned}$$

One can show that

$$\begin{aligned} X \cap Y \subset [X,Y]_\theta \subset X+Y, \end{aligned}$$

both embeddings being continuous.

Example A.3

For a \(\sigma \)-finite measure space \((M,\mu )\) and \(p_0,p_1 \in [1,\infty ]\), we have

$$\begin{aligned}{}[L_{p_0}(M),L_{p_1}(M)]_\theta = L_p(M), \quad \text {where} \quad \frac{1}{p} = \frac{1-\theta }{p_0} + \frac{\theta }{p_1}. \end{aligned}$$

Moreover, the corresponding norms coincide.

Proposition A.4

Let \(f \in {\mathcal {G}}(X,Y)\) and set

$$\begin{aligned} A_0= \sup _{t \in {{\mathbb {R}}}} \Vert f(it)\Vert _X \quad \text {and} \quad A_1=\sup _{t \in {{\mathbb {R}}}} \Vert f(1+it)\Vert _Y. \end{aligned}$$

Then, \(\Vert f(\theta )\Vert _{[X,Y]_\theta } \le A_0^{1-\theta } A_1^\theta .\)

Proof

If \(A_0, A_1 \ne 0\), the function \( g(w):= ({A_0}/{A_1})^{w-\theta } f(w), w \in S,\) is in \({\mathcal {G}}(X,Y)\) with \(g(\theta )=f(\theta )\) and

$$\begin{aligned} \sup _{t \in {{\mathbb {R}}}} \Vert g(it)\Vert _X \le A_0^{1-\theta } A_1^\theta \quad \text {and} \quad \sup _{t \in {{\mathbb {R}}}} \Vert g(1+it)\Vert _Y \le A_0^{1-\theta } A_1^\theta . \end{aligned}$$

Hence, \( \Vert f(\theta )\Vert _{[X,Y]_\theta } \le \Vert g(\theta )\Vert _{\mathcal G(X,Y)} \le A_0^{1-\theta } A_1^\theta .\) If one of \(A_0,A_1\) vanishes, we can replace it by \(\varepsilon > 0\) in the definition of g and then send \(\varepsilon \rightarrow 0\). If \(A_0=A_1=0\), we can choose \(g(w)=0\) to obtain the result. \(\square \)

In this paper, we will not need interpolation results for operators between abstract interpolation spaces. However, we will need the following more concrete result known as the Stein interpolation theorem [47] (see also [48]).

Remark A.5

Let us recall that a simple function on a measure space \((M,\mu )\) is a finite linear combination of characteristic functions of measurable sets of finite measure.

In the following, we denote the norm of \(L_p(M)\) by \(\Vert .\Vert _p\) and the operator norm of \(T:L_p \rightarrow L_q\) by \(\Vert T\Vert _{p,q}\).

Theorem A.6

Let \((M,\mu )\) and \((N,\nu )\) be \(\sigma \)-finite measure spaces and assume that for every \(w \in S\), \(T_w\) is a linear operator mapping the space of simple functions on M into measurable functions on N. Moreover, suppose that for all simple functions \(f: M \rightarrow {{\mathbb {C}}}\) and \(g : N \rightarrow {{\mathbb {C}}}\), the product \(T_wf \cdot g\) is integrable and that

$$\begin{aligned} S \ni w \mapsto \int _N (T_wf)(x)g(x) \nu (dx) \end{aligned}$$

is continuous and bounded on S and holomorphic in the interior of S. Finally, suppose that for some \(p_j,q_j \in [1,\infty ], j=0,1,\) and \(A_0,A_1 \ge 0\) we have

$$\begin{aligned} \Vert T_{it}f\Vert _{{q_0}} \le A_0 \Vert f\Vert _{{p_0}}, \quad \Vert T_{1+it}f\Vert _{{q_1}} \le A_1 \Vert f\Vert _{{p_1}} \end{aligned}$$

for all \(t \in {{\mathbb {R}}}\) and all simple functions \(f: M \rightarrow {{\mathbb {C}}}\). Then, for each \(\theta \in (0,1)\) and

$$\begin{aligned} 1 / {p_\theta } = {(1-\theta )}/ {p_0} + {\theta } /{p_1}, \quad 1/ {q_\theta } = {(1-\theta )}/ {q_0} + {\theta }/ {q_1}, \end{aligned}$$

the operator \(T_\theta \) can be extended to a bounded operator in \(\mathcal {B}(L_{p_\theta }(M),L_{q_\theta }(N))\) and

$$\begin{aligned} \Vert T_\theta \Vert _{{p_\theta },{q_\theta }} \le A_0^{1-\theta } A_1^\theta . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansmann, M. \(L_p\)-Spectrum and Lieb–Thirring Inequalities for Schrödinger Operators on the Hyperbolic Plane. Ann. Henri Poincaré 20, 2447–2479 (2019). https://doi.org/10.1007/s00023-019-00804-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00804-4

Navigation