Skip to main content
Log in

The Limiting Characteristic Polynomial of Classical Random Matrix Ensembles

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We demonstrate the convergence of the characteristic polynomial of several random matrix ensembles to a limiting universal function, at the microscopic scale. The random matrix ensembles we treat are classical compact groups and the Gaussian Unitary Ensemble. In fact, the result is the by-product of a general limit theorem for the convergence of random entire functions whose zeros present a simple regularity property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G.W., Guionnet, A., Zeitouni, O.: An introduction to random matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)

  2. Aizenman, M., Warzel, S.: On the ubiquity of the Cauchy distribution in spectral problems. Probab. Theory Relat. Fields 163(1–2), 61–87 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben Arous, G., Guionnet, A.: Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Relat. Fields 108(4), 517–542 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bourgade, P., Najnudel, J., Nikeghbali, A.: A unitary extension of virtual permutations. IMRN 2013(18), 4101–4134 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chhaibi, R., Najnudel, J., Nikeghbali, A.: The circular unitary ensemble and the riemann zeta function: the microscopic landscape and a new approach to ratios. Invent. Math. 207(1), 23–113 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Brian, C..: Notes on eigenvalue distributions for the classical compact groups. In: Recent Perspectives in Random Matrix Theory and Number Theory, volume 322 of London Math. Soc. Lecture Note Ser., pp. 111–145. Cambridge University Press, Cambridge (2005)

  7. Ercolani, N.M., McLaughlin, K.D.T.-R.: Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques and applications to graphical enumeration. Int. Math. Res. Not. 14, 755–820 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gustavsson, J.: Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincaré Probab. Statist. 41(2), 151–178 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hiai, Fumio, Petz, Dénes: The semicircle law, free random variables and entropy. Mathematical Surveys and Monographs, vol. 77. American Mathematical Society, Providence, RI (2000)

  10. Olav, K.: Random measures. Akademie-Verlag, Berlin; Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, third edition, (1983)

  11. Madan Lal, M.: Random matrices, volume 142 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, third edition, (2004)

  12. Mehta, M.L., Gaudin, M.: On the density of eigenvalues of a random matrix. Nuclear Phys. 18, 420–427 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Meckes, E.S., Meckes, M.W.: Spectral measures of powers of random matrices. Electron. Commun. Probab. 18(78), 13 (2013)

  14. Meckes, E.S., Meckes, M.W.: Self-similarity in the circular unitary ensemble. Discrete Anal., pages Paper No. 9, 14, (2016)

  15. Sodin, S.: On the critical points of random matrix characteristic polynomials and of the riemann \(\xi \)-function. Q. J. Math. 69(1), 183–210 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Elizabeth Meckes for an informative response regarding some of the bounds proved in Sect. 3, Sasha Sodin likewise for a helpful discussion, and an anonymous referee for several useful comments and corrections. B.R. was partially supported during this research by the NSF grant DMS-1701577.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad Rodgers.

Additional information

Communicated by Vadim Gorin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chhaibi, R., Hovhannisyan, E., Najnudel, J. et al. The Limiting Characteristic Polynomial of Classical Random Matrix Ensembles. Ann. Henri Poincaré 20, 1093–1119 (2019). https://doi.org/10.1007/s00023-019-00769-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00769-4

Navigation