Abstract
We examine the non-commutative index theory associated with the dynamics of a Delone set and the corresponding transversal groupoid. Our main motivation comes from the application to topological phases of aperiodic lattices and materials and applies to invariants from tilings as well. Our discussion concerns semifinite index pairings, factorisation properties of Kasparov modules and the construction of unbounded Fredholm modules for lattices with finite local complexity.
Similar content being viewed by others
References
Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157(2), 245–278 (1993)
Anderson, J.E., Putnam, I.F.: Topological invariants for substitution tilings and their associated \(C^*\)-algebras. Ergodic Theory Dyn. Syst. 18(3), 509–537 (1998)
Arici, F., D’Andrea, F., Landi, G.: Pimsner algebras and circle bundles. In: Alpay, D., Cipriani, F., Colombo, F., Guido, D., Sabadini, I., Sauvageot, J.-L. (eds.) Noncommutative Analysis, Operator Theory and Applications, pp. 1–25. Springer International Publishing, Cham (2016)
Arici, F., Kaad, J., Landi, G.: Pimsner algebras and Gysin sequences from principal circle actions. J. Noncommut. Geom. 10(1), 29–64 (2016)
Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3(suppl. 1), 3–38 (1964)
Atiyah, M.F., Singer, I.M.: Index theory for skew-adjoint Fredholm operators. Inst. Hautes Études Sci. Publ. Math. 37, 5–26 (1969)
Baaj, S., Julg, P.: Théorie bivariante de Kasparov et opérateurs non bornés dans les \(C^{\ast } \)-modules hilbertiens. C. R. Acad. Sci. Paris Sér. I Math. 296(21), 875–878 (1983)
Bandres, M.A., Rechtsman, M.C., Segev, M.: Topological photonic quasicrystals: fractal topological spectrum and protected transport. Phys. Rev. X 6, 011016 (2016)
Beckus, S., Bellissard, J., De Nittis, G.: Spectral continuity for aperiodic quantum systems I. General Theory J. Funct. Anal. 275(11), 2917–2977 (2018)
Bellissard, J.: \(K\)-theory of \(C^\ast \)-algebras in solid state physics. In: Statistical Mechanics and Field Theory: Mathematical Aspects (Groningen, 1985), volume 257 of Lecture Notes in Phys., Springer, Berlin pp. 99–156 (1986)
Bellissard, J.: Delone sets and materials science: a program. In: Mathematics of Aperiodic Order, volume 309 of Progr. Math., Birkhäuser/Springer, Basel, pp. 405–428 (2015)
Bellissard, J., Benedetti, R., Gambaudo, J.-M.: Spaces of tilings, finite telescopic approximations and gap-labeling. Commun. Math. Phys. 261(1), 1–41 (2006)
Bellissard, J., van Elst, A., Schulz-Baldes, H.: The non-commutative geometry of the quantum Hall-effect. J. Math. Phys. 35, 5373–5451 (1994)
Bellissard, J., Herrmann, D.J.L., Zarrouati, M.: Hulls of aperiodic solids and gap labelling theorems. Directions in Mathematical Quasicrystals. Volume 13 of CIRM Monograph Series, pp. 207–259 (2000)
Belmonte, F., Lein, M., Măntoiu, M.: Magnetic twisted actions on general abelian \(C^*\)-algebras. J. Operator Theory 69(1), 33–58 (2013)
Benameur, M., Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A., Wojciechowski, K.P.: An analytic approach to spectral flow in von Neumann algebras. In: Booß-Bavnbek, B., Klimek, S., Lesch, M., Zhang, W. (eds.) Analysis, Geometry and Topology of Elliptic Operators, pp. 297–352. World Scientific Publishing, Singapore (2006)
Blackadar, B.: \(K\)-Theory for Operator Algebras. Volume 5 of Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge (1998)
Blackadar, B., Cuntz, J.: Differential Banach algebra norms and smooth subalgebras of \(C^*\)-algebras. J. Operator Theory 26, 255–282 (1991)
Bourne, C., Carey, A.L., Rennie, A.: A non-commutative framework for topological insulators. Rev. Math. Phys. 28(2), 1650004 (2016)
Bourne, C., Kellendonk, J., Rennie, A.: The \(K\)-theoretic bulk-edge correspondence for topological insulators. Ann. Henri Poincaré 18(5), 1833–1866 (2017)
Bourne, C., Prodan, E.: Non-commutative Chern numbers for generic aperiodic discrete systems. J. Phys. A 51(23), 235202 (2018)
Bourne, C., Rennie, A.: Chern numbers, localisation and the bulk-edge correspondence for continuous models of topological phases. Math. Phys. Anal. Geom. 21(3), 16 (2018)
Bourne, C., Schulz-Baldes, H.: Applications of semifinite index theory to weak topological phases. In: Wood, D., de Gier, J., Praeger, C., Tao, T. (eds.) 2016 Matrix Annals. Springer, Cham (2018)
Carey, A.L., Neshveyev, S., Nest, R., Rennie, A.: Twisted cyclic theory, equivariant \(KK\)-theory and KMS states. J. Reine Angew. Math. 650, 161–191 (2011)
Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras i: spectral flow. Adv. Math. 202(2), 451–516 (2006)
Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras ii: the even case. Adv. Math. 202(2), 517–554 (2006)
Connes, A.: An analogue of the Thom isomorphism for crossed products of a \(C^{\ast } \)-algebra by an action of \({ R}\). Adv. Math. 39(1), 31–55 (1981)
Connes, A., Skandalis, G.: The longitudinal index theorem for foliations. Publ. RIMS, Kyoto Univ. 20, 1139–1183 (1984)
Cuntz, J.: A new look at \(KK\)-theory. \(K\)-theory 1, 31–51 (1987)
Daenzer, C.: A groupoid approach to noncommutative \(T\)-duality. Commun. Math. Phys. 288(1), 55–96 (2009)
Ewert, E.E., Meyer, R.: Coarse geometry and topological phases. (2018). arXiv:1802.05579
Fack, T., Kosaki, H.: Generalised \(s\)-numbers of \(\tau \)-measurable operators. Pac. J. Math. 123(2), 269–300 (1986)
Forrest, A., Hunton, J., Kellendonk, J.: Topological invariants for projection method patterns. Mem. Am. Math. Soc. 159(758), x+120 (2002)
Freed, D.S., Moore, G.W.: Twisted equivariant matter. Ann. Henri Poincaré 14(8), 1927–2023 (2013)
Germinet, F., Müller, P., Rojas-Molina, C.: Ergodicity and dynamical localization for Delone–Anderson operators. Rev. Math. Phys. 27(9), 1550020 (2015)
Goffeng, M., Mesland, B.: Spectral triples and finite summability on Cuntz-Krieger algebras. Doc. Math. 20, 89–170 (2015)
Goffeng, M., Mesland, B., Rennie, A.: Shift-tail equivalence and an unbounded representative of the Cuntz–Pimsner extension. Ergodic Theory Dyn. Syst. 38(4), 1389–1421 (2018)
Gomi, K., Thiang, G.C.: Crystallographic bulk-edge correspondence: glide reflections and twisted mod 2 indices. Lett. Math. Phys., online first (2018). https://doi.org/10.1007/s11005-018-1129-1
Gonçalves, D., Ramirez-Solano, M.: On the \(K\)-theory of \(C^*\)-algebras for substitution tilings (a pedestrian version). (2017). arXiv:1712.09551
Grossmann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators. Commun. Math. Phys. 343(2), 477–513 (2016)
Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, Boston (2001)
Hannabuss, K., Mathai, V., Thiang, G.C.: T-duality simplifies bulk-boundary correspondence: the noncommutative case. Lett. Math. Phys. 108(5), 1163–1201 (2018)
Hunton, J.: Spaces of projection method patterns and their cohomology. In: Mathematics of Aperiodic Order, volume 309 of Progr. Math., Birkhäuser/Springer, Basel, pp. 105–135 (2015)
Kasparov, G.G.: The operator \(K\)-functor and extensions of \(C^*\)-algebras. Math. USSR Izv. 16, 513–572 (1981)
Kasparov, G.G.: Equivariant \(KK\)-theory and the Novikov conjecture. Invent. Math. 91(1), 147–201 (1988)
Katsura, H., Koma, T.: The noncommutative index theorem and the periodic table for disordered topological insulators and superconductors. J. Math. Phys. 58(3), 031903 (2018)
Kellendonk, J.: Noncommutative geometry of tilings and gap labelling. Rev. Math. Phys. 7, 1133–1180 (1995)
Kellendonk, J.: The local structure of tilings and their integer group of coinvariants. Commun. Math. Phys. 187, 115–157 (1997)
Kellendonk, J.: On the \(C^*\)-algebraic approach to topological phases for insulators. Ann. Henri Poincaré 18(7), 2251–2300 (2017)
Kellendonk, J., Putnam, I.: Tilings, \(C^*\)-algebras, and \(K\)-theory. In: Directions in Mathematical Quasicrystals, Volume 13 of CRM Monogr. Ser., pp. 177–206. Amer. Math. Soc., Providence, RI (2000)
Kellendonk, J., Richard, S.: Topological boundary maps in physics. In: Boca, F., Purice, R., Strătilă, Ş. (eds), Perspectives in Operator Algebras and Mathematical Physics. Theta Ser. Adv. Math., volume 8, pp. 105–121 Theta, Bucharest (2008). arXiv:math-ph/0605048
Khoshkam, M., Skandalis, G.: Regular representation of groupoid \(C^*\)-algebras and applications to inverse semigroups. J. Reine Angew. Math. 546, 47–72 (2002)
Kubota, Y.: Notes on twisted equivariant \(K\)-theory for \(C^*\)-algebras. Int. J. Math. 27, 1650058 (2016)
Kubota, Y.: Controlled topological phases and bulk-edge correspondence. Commun. Math. Phys. 349(2), 493–525 (2017)
Kucerovsky, D.: The \(KK\)-product of unbounded modules. \(K\)-Theory 11, 17–34 (1997)
Kumjian, A.: On \(C^*\)-diagonals. Canad. J. Math. 38, 969–1008 (1986)
Julien, A., Kellendonk, J., Savinien, J.: On the noncommutative geometry of tilings. In: Mathematics of Aperiodic Order, volume 309 of Progr. Math., Birkhäuser/Springer, Basel, pp. 259–306 (2015)
Laca, M., Neshveyev, S.: KMS states of quasi-free dynamics on Pimsner algebras. J. Funct. Anal. 211(2), 457–482 (2004)
Lagragias, J.C., Pleasants, P.A.B.: Repetitive Delone sets and quasicrystals. Ergodic Theory Dyn. Syst. 23(3), 831–867 (2003)
Lance, E.C.: Hilbert \(C^*\)-Modules: A Toolkit for Operator Algebraists. Volume 210 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (1995)
Lawson, H.B., Michelsohn, M.-L.: Spin geometry. Volume 38 of Princeton Mathematical Series, Princeton University Press, Princeton (1989)
Lenz, D., Peyerimhoff, N., Veselić, I.: Groupoids, von Neumann algebras and the integrated density of states. Math. Phys. Anal. Geom. 10(1), 1–41 (2007)
Lesch, M., Mesland, B.: Sums of regular self-adjoint operators in Hilbert-\(C^*\)-modules. J. Math. Anal. Appl. 472(1), 947–980 (2019)
Mampusti, M., Whittaker, M.: Fractal spectral triples on Kellendonk’s \(C^*\)-algebra of a substitution tiling. J. Geom. Phys. 112, 224–239 (2017)
Mesland, B.: Groupoid cocycles and \(K\)-theory. Münster J. Math. 4, 227–250 (2011)
Mesland, B., Rennie, A.: Nonunital spectral triples and metric completeness in unbounded \(KK\)-theory. J. Funct. Anal. 271(9), 2460–2538 (2016)
Macho Stadler, M., O’Uchi, M.: Correspondence of groupoid \(C^{*}\)-algebras. J. Operator Theory 42, 103–119 (1999)
Mitchell, N.P., Nash, L.M., Hexner, D., Turner, A.M., Irvine, W.T.M.: Amorphous topological insulators constructed from random point sets. Nat. Phys. 14, 380–385 (2018)
Moutuou, E.M.: Twisted groupoid \(KR\)-theory. Ph.D. thesis, Université de Lorraine, Universität Paderborn (2012)
Moutuou, E.M., Tu, J.-L.: Equivalence of fell systems and their reduced groupoid \(C^*\)-algebras (2011). arXiv:1101.1235
Muhly, P.S., Renault, J., Williams, D.P.: Equivalence and isomorphism for groupoid \(C^{\ast }\)-algebras. J. Operator Theory 17, 3–22 (1987)
Muhly, P.S., Williams, D.P.: Renault’s equivalence theorem for groupoid crossed products. Volume 3 of NYJM Monographs, State University of New York, University at Albany, Albany (2008)
Packer, J.A., Raeburn, I.: Twisted crossed products of \(C^*\)-algebras. Math. Proc. Cambridge Philos. Soc. 106, 293–311 (1989)
Pearson, J., Bellissard, J.: Noncommutative Riemannian geometry and diffusion on ultrametric Cantor sets. J. Noncommut. Geom. 3(3), 447–480 (2009)
Putnam, I.F., Spielberg, J.: The structure of \(C^\ast \)-algebras associated with hyperbolic dynamical systems. J. Funct. Anal. 163(2), 279–299 (1999)
Prodan, E.: A Computational Non-commutative Geometry Program for Disordered Topological Insulators. Springer, Cham (2017)
Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From \(K\)-Theory to Physics. Springer, Berlin (2016)
Prodan, E., Schulz-Baldes, H.: Generalized Connes–Chern characters in \(KK\)-theory with an application to weak invariants of topological insulators. Rev. Math. Phys. 28, 1650024 (2016)
Renault, J.: A groupoid approach to \(C^*\)-algebras. Lecture Notes in Mathematics, vol. 793, Springer (1980)
Rennie, A., Robertson, D., Sims, A.: The extension class and KMS states for Cuntz–Pimsner algebras of some bi-Hilbertian bimodules. J. Topol. Anal. 9(2), 297–327 (2017)
Rennie, A., Robertson, D., Sims, A.: Groupoid algebras as Cuntz–Pimsner algebras. Math. Scand. 120(1), 115–123 (2017)
Rieffel, M.: Connes’ analogue for crossed products of the Thom isomorphism. Contemp. Math. 10, 143–154 (1982)
Rojas-Molina, C.: Random Schrödinger Operators on discrete structures (2017). arXiv:1710.02293
Sadun, L.: Topology of Tiling Spaces. Volume 46 of University Lecture Series, American Mathematical Society, Providence (2008)
Sadun, L., Williams, R.W.: Tiling spaces are Cantor set fiber bundles. Ergodic Theory Dyn. Syst. 23(1), 307–316 (2003)
Savinien, J.: Cohomology and \(K\)-theory of aperiodic tilings. Ph.D. thesis, Georgia Institute of Technology (2008)
Savinien, J., Bellissard, J.: A spectral sequence for the \(K\)-theory of tiling spaces. Ergodic Theory Dyn. Syst. 29(3), 997–1031 (2009)
Schröder, H.: \(K\)-Theory for Real \(C^*\)-Algebras and Applications. Longman Scientific & Technical, Harlow (1993). Copublished in the United States with Wiley, New York
Sims, A.: Étale groupoids and their \(C^*\)-algebras. To appear In: Szabo, G., Williams, D., Sims, A. (eds), Operator Algebras and Dynamics: Groupoids, Crossed Products and Rokhlin Dimension, Birkhäuser (2017). arXiv:1710.10897
Sims, A., Williams, D.P.: Renault equivalence theorem for reduced groupoid \(C^*\)-algebras. J. Operator Theory 68(1), 223–239 (2012)
Sims, A., Williams, D.P.: An equivalence theorem for reduced Fell bundle \(C^*\)-algebras. New York J. Math. 19, 159–178 (2013)
Sims, A., Yeend, T.: \(C^*\)-algebras associated to product systems of Hilbert bimodules. J. Operator Theory 64(2), 349–376 (2010)
Thiang, G.C.: On the K-theoretic classification of topological phases of matter. Ann. Henri Poincaré 17(4), 757–794 (2016)
Wigner, E.P.: Group theory: and its application to the quantum mechanics of atomic spectra. Expanded and improved ed. Translated from the German by J. J. Griffin. Volume 5 of Pure and Applied Physics, Academic Press, New York (1959)
Williamson, P.: Cuntz–Pimsner algebras associated with substitution tilings. Ph.D thesis., University of Victoria (2016)
Acknowledgements
We thank Jean Bellissard, Magnus Goffeng, Johannes Kellendonk, Aidan Sims and Makoto Yamashita for helpful discussions. We thank the anonymous referees for their careful reading of the manuscript and valuable feedback. CB was supported by a postdoctoral fellowship for overseas researchers from The Japan Society for the Promotion of Science (No. P16728), and both authors were supported by a KAKENHI Grant-in-Aid for JSPS fellows (No. 16F16728). This work is also supported by World Premier International Research Center Initiative (WPI), MEXT, Japan. BM gratefully acknowledges support from the Hausdorff Center for Mathematics and the Max Planck Institute for Mathematics in Bonn, Germany, as well as Tohoku University, Sendai, Japan, for its hospitality. Part of this work was carried out during the Lorentz Center programme KK-theory, Gauge Theory and Topological Phases held in Leiden, Netherlands, in March 2017. We also thank the Leibniz Universität Hannover, Germany, the Radboud University Nijmegen, Netherlands, and the Erwin Schrödinger Institute, University of Vienna, Austria, for hospitality.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Jean Bellissard.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bourne, C., Mesland, B. Index Theory and Topological Phases of Aperiodic Lattices. Ann. Henri Poincaré 20, 1969–2038 (2019). https://doi.org/10.1007/s00023-019-00764-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-019-00764-9