Skip to main content
Log in

Index Theory and Topological Phases of Aperiodic Lattices

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We examine the non-commutative index theory associated with the dynamics of a Delone set and the corresponding transversal groupoid. Our main motivation comes from the application to topological phases of aperiodic lattices and materials and applies to invariants from tilings as well. Our discussion concerns semifinite index pairings, factorisation properties of Kasparov modules and the construction of unbounded Fredholm modules for lattices with finite local complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizenman, M., Molchanov, S.: Localization at large disorder and at extreme energies: an elementary derivation. Commun. Math. Phys. 157(2), 245–278 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Anderson, J.E., Putnam, I.F.: Topological invariants for substitution tilings and their associated \(C^*\)-algebras. Ergodic Theory Dyn. Syst. 18(3), 509–537 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arici, F., D’Andrea, F., Landi, G.: Pimsner algebras and circle bundles. In: Alpay, D., Cipriani, F., Colombo, F., Guido, D., Sabadini, I., Sauvageot, J.-L. (eds.) Noncommutative Analysis, Operator Theory and Applications, pp. 1–25. Springer International Publishing, Cham (2016)

    MATH  Google Scholar 

  4. Arici, F., Kaad, J., Landi, G.: Pimsner algebras and Gysin sequences from principal circle actions. J. Noncommut. Geom. 10(1), 29–64 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology 3(suppl. 1), 3–38 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  6. Atiyah, M.F., Singer, I.M.: Index theory for skew-adjoint Fredholm operators. Inst. Hautes Études Sci. Publ. Math. 37, 5–26 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baaj, S., Julg, P.: Théorie bivariante de Kasparov et opérateurs non bornés dans les \(C^{\ast } \)-modules hilbertiens. C. R. Acad. Sci. Paris Sér. I Math. 296(21), 875–878 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Bandres, M.A., Rechtsman, M.C., Segev, M.: Topological photonic quasicrystals: fractal topological spectrum and protected transport. Phys. Rev. X 6, 011016 (2016)

    Google Scholar 

  9. Beckus, S., Bellissard, J., De Nittis, G.: Spectral continuity for aperiodic quantum systems I. General Theory J. Funct. Anal. 275(11), 2917–2977 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bellissard, J.: \(K\)-theory of \(C^\ast \)-algebras in solid state physics. In: Statistical Mechanics and Field Theory: Mathematical Aspects (Groningen, 1985), volume 257 of Lecture Notes in Phys., Springer, Berlin pp. 99–156 (1986)

  11. Bellissard, J.: Delone sets and materials science: a program. In: Mathematics of Aperiodic Order, volume 309 of Progr. Math., Birkhäuser/Springer, Basel, pp. 405–428 (2015)

  12. Bellissard, J., Benedetti, R., Gambaudo, J.-M.: Spaces of tilings, finite telescopic approximations and gap-labeling. Commun. Math. Phys. 261(1), 1–41 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Bellissard, J., van Elst, A., Schulz-Baldes, H.: The non-commutative geometry of the quantum Hall-effect. J. Math. Phys. 35, 5373–5451 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bellissard, J., Herrmann, D.J.L., Zarrouati, M.: Hulls of aperiodic solids and gap labelling theorems. Directions in Mathematical Quasicrystals. Volume 13 of CIRM Monograph Series, pp. 207–259 (2000)

  15. Belmonte, F., Lein, M., Măntoiu, M.: Magnetic twisted actions on general abelian \(C^*\)-algebras. J. Operator Theory 69(1), 33–58 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Benameur, M., Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A., Wojciechowski, K.P.: An analytic approach to spectral flow in von Neumann algebras. In: Booß-Bavnbek, B., Klimek, S., Lesch, M., Zhang, W. (eds.) Analysis, Geometry and Topology of Elliptic Operators, pp. 297–352. World Scientific Publishing, Singapore (2006)

    Chapter  Google Scholar 

  17. Blackadar, B.: \(K\)-Theory for Operator Algebras. Volume 5 of Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge (1998)

  18. Blackadar, B., Cuntz, J.: Differential Banach algebra norms and smooth subalgebras of \(C^*\)-algebras. J. Operator Theory 26, 255–282 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Bourne, C., Carey, A.L., Rennie, A.: A non-commutative framework for topological insulators. Rev. Math. Phys. 28(2), 1650004 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bourne, C., Kellendonk, J., Rennie, A.: The \(K\)-theoretic bulk-edge correspondence for topological insulators. Ann. Henri Poincaré 18(5), 1833–1866 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Bourne, C., Prodan, E.: Non-commutative Chern numbers for generic aperiodic discrete systems. J. Phys. A 51(23), 235202 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Bourne, C., Rennie, A.: Chern numbers, localisation and the bulk-edge correspondence for continuous models of topological phases. Math. Phys. Anal. Geom. 21(3), 16 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bourne, C., Schulz-Baldes, H.: Applications of semifinite index theory to weak topological phases. In: Wood, D., de Gier, J., Praeger, C., Tao, T. (eds.) 2016 Matrix Annals. Springer, Cham (2018)

    Google Scholar 

  24. Carey, A.L., Neshveyev, S., Nest, R., Rennie, A.: Twisted cyclic theory, equivariant \(KK\)-theory and KMS states. J. Reine Angew. Math. 650, 161–191 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras i: spectral flow. Adv. Math. 202(2), 451–516 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Carey, A.L., Phillips, J., Rennie, A., Sukochev, F.A.: The local index formula in semifinite von Neumann algebras ii: the even case. Adv. Math. 202(2), 517–554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Connes, A.: An analogue of the Thom isomorphism for crossed products of a \(C^{\ast } \)-algebra by an action of \({ R}\). Adv. Math. 39(1), 31–55 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Connes, A., Skandalis, G.: The longitudinal index theorem for foliations. Publ. RIMS, Kyoto Univ. 20, 1139–1183 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cuntz, J.: A new look at \(KK\)-theory. \(K\)-theory 1, 31–51 (1987)

  30. Daenzer, C.: A groupoid approach to noncommutative \(T\)-duality. Commun. Math. Phys. 288(1), 55–96 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Ewert, E.E., Meyer, R.: Coarse geometry and topological phases. (2018). arXiv:1802.05579

  32. Fack, T., Kosaki, H.: Generalised \(s\)-numbers of \(\tau \)-measurable operators. Pac. J. Math. 123(2), 269–300 (1986)

    Article  MATH  Google Scholar 

  33. Forrest, A., Hunton, J., Kellendonk, J.: Topological invariants for projection method patterns. Mem. Am. Math. Soc. 159(758), x+120 (2002)

    MathSciNet  MATH  Google Scholar 

  34. Freed, D.S., Moore, G.W.: Twisted equivariant matter. Ann. Henri Poincaré 14(8), 1927–2023 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Germinet, F., Müller, P., Rojas-Molina, C.: Ergodicity and dynamical localization for Delone–Anderson operators. Rev. Math. Phys. 27(9), 1550020 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Goffeng, M., Mesland, B.: Spectral triples and finite summability on Cuntz-Krieger algebras. Doc. Math. 20, 89–170 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Goffeng, M., Mesland, B., Rennie, A.: Shift-tail equivalence and an unbounded representative of the Cuntz–Pimsner extension. Ergodic Theory Dyn. Syst. 38(4), 1389–1421 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gomi, K., Thiang, G.C.: Crystallographic bulk-edge correspondence: glide reflections and twisted mod 2 indices. Lett. Math. Phys., online first (2018). https://doi.org/10.1007/s11005-018-1129-1

  39. Gonçalves, D., Ramirez-Solano, M.: On the \(K\)-theory of \(C^*\)-algebras for substitution tilings (a pedestrian version). (2017). arXiv:1712.09551

  40. Grossmann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators. Commun. Math. Phys. 343(2), 477–513 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Gracia-Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser Advanced Texts Basler Lehrbücher. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  42. Hannabuss, K., Mathai, V., Thiang, G.C.: T-duality simplifies bulk-boundary correspondence: the noncommutative case. Lett. Math. Phys. 108(5), 1163–1201 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Hunton, J.: Spaces of projection method patterns and their cohomology. In: Mathematics of Aperiodic Order, volume 309 of Progr. Math., Birkhäuser/Springer, Basel, pp. 105–135 (2015)

  44. Kasparov, G.G.: The operator \(K\)-functor and extensions of \(C^*\)-algebras. Math. USSR Izv. 16, 513–572 (1981)

    Article  MATH  Google Scholar 

  45. Kasparov, G.G.: Equivariant \(KK\)-theory and the Novikov conjecture. Invent. Math. 91(1), 147–201 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Katsura, H., Koma, T.: The noncommutative index theorem and the periodic table for disordered topological insulators and superconductors. J. Math. Phys. 58(3), 031903 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Kellendonk, J.: Noncommutative geometry of tilings and gap labelling. Rev. Math. Phys. 7, 1133–1180 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kellendonk, J.: The local structure of tilings and their integer group of coinvariants. Commun. Math. Phys. 187, 115–157 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Kellendonk, J.: On the \(C^*\)-algebraic approach to topological phases for insulators. Ann. Henri Poincaré 18(7), 2251–2300 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Kellendonk, J., Putnam, I.: Tilings, \(C^*\)-algebras, and \(K\)-theory. In: Directions in Mathematical Quasicrystals, Volume 13 of CRM Monogr. Ser., pp. 177–206. Amer. Math. Soc., Providence, RI (2000)

  51. Kellendonk, J., Richard, S.: Topological boundary maps in physics. In: Boca, F., Purice, R., Strătilă, Ş. (eds), Perspectives in Operator Algebras and Mathematical Physics. Theta Ser. Adv. Math., volume 8, pp. 105–121 Theta, Bucharest (2008). arXiv:math-ph/0605048

  52. Khoshkam, M., Skandalis, G.: Regular representation of groupoid \(C^*\)-algebras and applications to inverse semigroups. J. Reine Angew. Math. 546, 47–72 (2002)

    MathSciNet  MATH  Google Scholar 

  53. Kubota, Y.: Notes on twisted equivariant \(K\)-theory for \(C^*\)-algebras. Int. J. Math. 27, 1650058 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kubota, Y.: Controlled topological phases and bulk-edge correspondence. Commun. Math. Phys. 349(2), 493–525 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Kucerovsky, D.: The \(KK\)-product of unbounded modules. \(K\)-Theory 11, 17–34 (1997)

  56. Kumjian, A.: On \(C^*\)-diagonals. Canad. J. Math. 38, 969–1008 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  57. Julien, A., Kellendonk, J., Savinien, J.: On the noncommutative geometry of tilings. In: Mathematics of Aperiodic Order, volume 309 of Progr. Math., Birkhäuser/Springer, Basel, pp. 259–306 (2015)

  58. Laca, M., Neshveyev, S.: KMS states of quasi-free dynamics on Pimsner algebras. J. Funct. Anal. 211(2), 457–482 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  59. Lagragias, J.C., Pleasants, P.A.B.: Repetitive Delone sets and quasicrystals. Ergodic Theory Dyn. Syst. 23(3), 831–867 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  60. Lance, E.C.: Hilbert \(C^*\)-Modules: A Toolkit for Operator Algebraists. Volume 210 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (1995)

  61. Lawson, H.B., Michelsohn, M.-L.: Spin geometry. Volume 38 of Princeton Mathematical Series, Princeton University Press, Princeton (1989)

  62. Lenz, D., Peyerimhoff, N., Veselić, I.: Groupoids, von Neumann algebras and the integrated density of states. Math. Phys. Anal. Geom. 10(1), 1–41 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. Lesch, M., Mesland, B.: Sums of regular self-adjoint operators in Hilbert-\(C^*\)-modules. J. Math. Anal. Appl. 472(1), 947–980 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  64. Mampusti, M., Whittaker, M.: Fractal spectral triples on Kellendonk’s \(C^*\)-algebra of a substitution tiling. J. Geom. Phys. 112, 224–239 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Mesland, B.: Groupoid cocycles and \(K\)-theory. Münster J. Math. 4, 227–250 (2011)

    MathSciNet  MATH  Google Scholar 

  66. Mesland, B., Rennie, A.: Nonunital spectral triples and metric completeness in unbounded \(KK\)-theory. J. Funct. Anal. 271(9), 2460–2538 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  67. Macho Stadler, M., O’Uchi, M.: Correspondence of groupoid \(C^{*}\)-algebras. J. Operator Theory 42, 103–119 (1999)

    MathSciNet  MATH  Google Scholar 

  68. Mitchell, N.P., Nash, L.M., Hexner, D., Turner, A.M., Irvine, W.T.M.: Amorphous topological insulators constructed from random point sets. Nat. Phys. 14, 380–385 (2018)

    Article  Google Scholar 

  69. Moutuou, E.M.: Twisted groupoid \(KR\)-theory. Ph.D. thesis, Université de Lorraine, Universität Paderborn (2012)

  70. Moutuou, E.M., Tu, J.-L.: Equivalence of fell systems and their reduced groupoid \(C^*\)-algebras (2011). arXiv:1101.1235

  71. Muhly, P.S., Renault, J., Williams, D.P.: Equivalence and isomorphism for groupoid \(C^{\ast }\)-algebras. J. Operator Theory 17, 3–22 (1987)

    MathSciNet  MATH  Google Scholar 

  72. Muhly, P.S., Williams, D.P.: Renault’s equivalence theorem for groupoid crossed products. Volume 3 of NYJM Monographs, State University of New York, University at Albany, Albany (2008)

  73. Packer, J.A., Raeburn, I.: Twisted crossed products of \(C^*\)-algebras. Math. Proc. Cambridge Philos. Soc. 106, 293–311 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Pearson, J., Bellissard, J.: Noncommutative Riemannian geometry and diffusion on ultrametric Cantor sets. J. Noncommut. Geom. 3(3), 447–480 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  75. Putnam, I.F., Spielberg, J.: The structure of \(C^\ast \)-algebras associated with hyperbolic dynamical systems. J. Funct. Anal. 163(2), 279–299 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  76. Prodan, E.: A Computational Non-commutative Geometry Program for Disordered Topological Insulators. Springer, Cham (2017)

    Book  MATH  Google Scholar 

  77. Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From \(K\)-Theory to Physics. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  78. Prodan, E., Schulz-Baldes, H.: Generalized Connes–Chern characters in \(KK\)-theory with an application to weak invariants of topological insulators. Rev. Math. Phys. 28, 1650024 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  79. Renault, J.: A groupoid approach to \(C^*\)-algebras. Lecture Notes in Mathematics, vol. 793, Springer (1980)

  80. Rennie, A., Robertson, D., Sims, A.: The extension class and KMS states for Cuntz–Pimsner algebras of some bi-Hilbertian bimodules. J. Topol. Anal. 9(2), 297–327 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  81. Rennie, A., Robertson, D., Sims, A.: Groupoid algebras as Cuntz–Pimsner algebras. Math. Scand. 120(1), 115–123 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  82. Rieffel, M.: Connes’ analogue for crossed products of the Thom isomorphism. Contemp. Math. 10, 143–154 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  83. Rojas-Molina, C.: Random Schrödinger Operators on discrete structures (2017). arXiv:1710.02293

  84. Sadun, L.: Topology of Tiling Spaces. Volume 46 of University Lecture Series, American Mathematical Society, Providence (2008)

  85. Sadun, L., Williams, R.W.: Tiling spaces are Cantor set fiber bundles. Ergodic Theory Dyn. Syst. 23(1), 307–316 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  86. Savinien, J.: Cohomology and \(K\)-theory of aperiodic tilings. Ph.D. thesis, Georgia Institute of Technology (2008)

  87. Savinien, J., Bellissard, J.: A spectral sequence for the \(K\)-theory of tiling spaces. Ergodic Theory Dyn. Syst. 29(3), 997–1031 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  88. Schröder, H.: \(K\)-Theory for Real \(C^*\)-Algebras and Applications. Longman Scientific & Technical, Harlow (1993). Copublished in the United States with Wiley, New York

    MATH  Google Scholar 

  89. Sims, A.: Étale groupoids and their \(C^*\)-algebras. To appear In: Szabo, G., Williams, D., Sims, A. (eds), Operator Algebras and Dynamics: Groupoids, Crossed Products and Rokhlin Dimension, Birkhäuser (2017). arXiv:1710.10897

  90. Sims, A., Williams, D.P.: Renault equivalence theorem for reduced groupoid \(C^*\)-algebras. J. Operator Theory 68(1), 223–239 (2012)

    MathSciNet  MATH  Google Scholar 

  91. Sims, A., Williams, D.P.: An equivalence theorem for reduced Fell bundle \(C^*\)-algebras. New York J. Math. 19, 159–178 (2013)

    MathSciNet  MATH  Google Scholar 

  92. Sims, A., Yeend, T.: \(C^*\)-algebras associated to product systems of Hilbert bimodules. J. Operator Theory 64(2), 349–376 (2010)

    MathSciNet  MATH  Google Scholar 

  93. Thiang, G.C.: On the K-theoretic classification of topological phases of matter. Ann. Henri Poincaré 17(4), 757–794 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. Wigner, E.P.: Group theory: and its application to the quantum mechanics of atomic spectra. Expanded and improved ed. Translated from the German by J. J. Griffin. Volume 5 of Pure and Applied Physics, Academic Press, New York (1959)

  95. Williamson, P.: Cuntz–Pimsner algebras associated with substitution tilings. Ph.D thesis., University of Victoria (2016)

Download references

Acknowledgements

We thank Jean Bellissard, Magnus Goffeng, Johannes Kellendonk, Aidan Sims and Makoto Yamashita for helpful discussions. We thank the anonymous referees for their careful reading of the manuscript and valuable feedback. CB was supported by a postdoctoral fellowship for overseas researchers from The Japan Society for the Promotion of Science (No. P16728), and both authors were supported by a KAKENHI Grant-in-Aid for JSPS fellows (No. 16F16728). This work is also supported by World Premier International Research Center Initiative (WPI), MEXT, Japan. BM gratefully acknowledges support from the Hausdorff Center for Mathematics and the Max Planck Institute for Mathematics in Bonn, Germany, as well as Tohoku University, Sendai, Japan, for its hospitality. Part of this work was carried out during the Lorentz Center programme KK-theory, Gauge Theory and Topological Phases held in Leiden, Netherlands, in March 2017. We also thank the Leibniz Universität Hannover, Germany, the Radboud University Nijmegen, Netherlands, and the Erwin Schrödinger Institute, University of Vienna, Austria, for hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bourne.

Additional information

Communicated by Jean Bellissard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourne, C., Mesland, B. Index Theory and Topological Phases of Aperiodic Lattices. Ann. Henri Poincaré 20, 1969–2038 (2019). https://doi.org/10.1007/s00023-019-00764-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00764-9

Navigation