Advertisement

Annales Henri Poincaré

, Volume 20, Issue 5, pp 1403–1437 | Cite as

Relation Between Regge Calculus and BF Theory on Manifolds with Defects

  • Marcin KisielowskiEmail author
Open Access
Article
  • 273 Downloads

Abstract

In Regge calculus, the space–time manifold is approximated by certain abstract simplicial complex, called a pseudomanifold, and the metric is approximated by an assignment of a length to each 1-simplex. In this paper for each pseudomanifold, we construct a smooth manifold which we call a manifold with defects. This manifold emerges from the purely combinatorial simplicial complex as a result of gluing geometric realizations of its n-simplices followed by removing the simplices of dimension \(n-2\). The Regge geometry is encoded in a boundary data of a BF theory on this manifold. We consider an action functional which coincides with the standard BF action for suitably regular manifolds with defects and fields. We show that the action evaluated at solutions of the field equations satisfying certain boundary conditions coincides with an evaluation of the Regge action at Regge geometries defined by the boundary data. As a result, the degrees of freedom of Regge calculus are traded for discrete degrees of freedom of topological BF theory.

References

  1. 1.
    Rovelli, C., Vidotto, F.: Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  2. 2.
    Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  3. 3.
    Baez, J.C.: An introduction to spin foam models of quantum gravity and BF theory. Lect. Notes Phys. 543, 25–94 (2000)ADSzbMATHCrossRefGoogle Scholar
  4. 4.
    Perez, A.: Spin foam models for quantum gravity. Class. Quantum Gravity 20, R43 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Perez, A.: The spin foam approach to quantum gravity. Living Rev. Relat. 16, 3 (2013)ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Rovelli, C.: Zakopane lectures on loop gravity. PoS QGQGS2011, 003 (2011)Google Scholar
  7. 7.
    Engle, J.: Springer Handbook of Spacetime, Ch. Spin Foams. Springer, Berlin (2014)Google Scholar
  8. 8.
    Rovelli, C.: Loop quantum gravity: the first twenty five years. Class. Quantum Gravity 28, 153002 (2011)ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    Ashtekar, A., Reuter, M., Rovelli, C.: General Relativity & Gravitation: a Centennial Perspective. Pennsylvania State University (2015)Google Scholar
  10. 10.
    Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)zbMATHCrossRefGoogle Scholar
  11. 11.
    Ponzano, G., Regge, T.: Spectroscopic and group theoretical methods in physics: Racah memorial volume. In: Bloch, F., Cohen, S., De Shalit, A., Sambursky, S., Talmi, I. (eds.) Semiclassical Limit of Racah Coefficients. North-Holland Publishing Co., Amsterdam (1968)Google Scholar
  12. 12.
    Engle, J., Livine, E., Pereira, R., Rovelli, C.: LQG vertex with finite Immirzi parameter. Nucl. Phys. B 799, 136–149 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Freidel, L., Krasnov, K.: A new spin foam model for 4D gravity. Class. Quantum Gravity 25, 125018 (2008)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Barrett, J.W., Crane, L.: Relativistic spin networks and quantum gravity. J. Math. Phys. 39, 3296–3302 (1998)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Barrett, J.W., Crane, L.: A Lorentzian signature model for quantum general relativity. Class. Quantum Gravity 17, 3101–3118 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Barrett, J.W., Dowdall, R.J., Fairbairn, W.J., Hellmann, F., Pereira, R.: Lorentzian spin foam amplitudes: graphical calculus and asymptotics. Class. Quantum Gravity 27(16), 165009 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Bianchi, E., Regoli, D., Rovelli, C.: Face amplitude of spinfoam quantum gravity. Class. Quantum Gravity 27, 185009 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Kaminski, W., Kisielowski, M., Lewandowski, J.: Spin-foams for all loop quantum gravity. Class. Quantum Gravity 27, 095006 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kaminski, W., Kisielowski, M., Lewandowski, J.: The EPRL intertwiners and corrected partition function. Class. Quantum Gravity 27, 165020 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Bahr, B., Hellmann, F., Kaminski, W., Kisielowski, M., Lewandowski, J.: Operator spin foam models. Class. Quantum Gravity 28, 105003 (2011)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Engle, J.: Proposed proper Engle–Pereira–Rovelli–Livine vertex amplitude. Phys. Rev. D87(8), 084048 (2013)ADSMathSciNetGoogle Scholar
  22. 22.
    Engle, J.: A spin-foam vertex amplitude with the correct semiclassical limit. Phys. Lett. B 724, 333–337 (2013)ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    Bianchi, E., Hellmann, F.: The construction of spin foam vertex amplitudes. SIGMA 9, 008 (2013)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Plebanski, J.F.: On the separation of Einsteinian substructures. J. Math. Phys. 18, 2511–2520 (1977)ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Reisenberger, M.P., Rovelli, C.: ’Sum over surfaces’ form of loop quantum gravity. Phys. Rev. D 56, 3490–3508 (1997)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Rovelli, C.: The projector on physical states in loop quantum gravity. Phys. Rev. D 59, 104015 (1999)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Noui, K., Perez, A.: Three-dimensional loop quantum gravity: physical scalar product and spin foam models. Class. Quantum Gravity 22, 1739–1762 (2005)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Engle, J., Han, M., Thiemann, T.: Canonical path integral measures for Holst and Plebanski gravity. I. Reduced phase space derivation. Class. Quantum Gravity 27, 245014 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Han, M., Thiemann, T.: On the relation between Rigging inner product and master constraint direct integral decomposition. J. Math. Phys. 51, 092501 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Han, M., Thiemann, T.: On the relation between operator constraint-, master constraint-, reduced phase space-, and path integral quantisation. Class. Quantum Gravity 27, 225019 (2010)ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Dittrich, B., Hohn, P.A.: From covariant to canonical formulations of discrete gravity. Class. Quantum Gravity 27, 155001 (2010)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Alesci, E., Thiemann, T., Zipfel, A.: Linking covariant and canonical LQG: new solutions to the Euclidean scalar constraint. Phys. Rev. D 86, 024017 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    Thiemann, T., Zipfel, A.: Linking covariant and canonical LQG II: spin foam projector. Class. Quantum Gravity 31, 125008 (2014)ADSzbMATHCrossRefGoogle Scholar
  34. 34.
    Ashtekar, A., Marolf, D., Mourao, J., Thiemann, T.: Constructing Hamiltonian quantum theories from path integrals in a diffeomorphism-invariant context. Class. Quantum Gravity 17(23), 4919 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Bianchi, E.: Loop quantum gravity a la Aharonov–Bohm. Gen. Relativ. Gravit. 46, 1668 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Haggard, H.M., Han, M., Kamiński, W., Riello, A.: SL(2, C) Chern–Simons theory, a non-planar graph operator, and 4D loop quantum gravity with a cosmological constant: semiclassical geometry. Nucl. Phys. B 900, 1–79 (2015)ADSzbMATHCrossRefGoogle Scholar
  37. 37.
    Han, M.: 4D quantum geometry from 3D supersymmetric gauge theory and holomorphic block. JHEP 01, 065 (2016)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Haggard, H.M., Han, M., Kamiński, W., Riello, A.: Four-dimensional quantum gravity with a cosmological constant from three-dimensional holomorphic blocks. Phys. Lett. B 752, 258–262 (2016)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Han, M., Huang, Z.: Loop-quantum-gravity simplicity constraint as surface defect in complex Chern–Simons theory. Phys. Rev. D 95, 104031 (2017)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Penrose, R.: Angular momentum: an approach to combinatorial space-time. In: Bastin, T. (ed.) Quantum Theory and Beyond. Cambridge University Press, pp 151–180 (1971)Google Scholar
  41. 41.
    De Pietri, R., Petronio, C.: Feynman diagrams of generalized matrix models and the associated manifolds in dimension 4. J. Math. Phys. 41, 6671–6688 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Freidel, L.: Group field theory: an overview. Int. J. Theor. Phys. 44, 1769–1783 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Ben Geloun, J., Gurau, R., Rivasseau, V.: EPRL/FK group field theory. Europhys. Lett. 92, 60008 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Krajewski, T., Magnen, J., Rivasseau, V., Tanasa, A., Vitale, P.: Quantum corrections in the group field theory formulation of the EPRL/FK models. Phys. Rev. D 82, 124069 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    Oriti, D., Ryan, J.P., Thürigen, J.: Group field theories for all loop quantum gravity. New J. Phys. 17, 023042 (2015)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Kisielowski, M., Lewandowski, J., Puchta, J.: Feynman diagrammatic approach to spin foams. Class. Quantum Gravity 29, 015009 (2012)ADSzbMATHCrossRefGoogle Scholar
  47. 47.
    Regge, T.: General relativity without coordinates. Il Nuovo Cimento (1955–1965) 19(3), 558–571 (1961)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Sorkin, R.D.: Development of simplectic methods for the metrical and electromagnetic fields. Ph.D. thesis, California Institute of Technology (1974)Google Scholar
  50. 50.
    Friedberg, R., Lee, T.D.: Derivation of Regge’s action from Einstein’s theory of general relativity. Nucl. Phys. B242, 145 (1984). [,213(1984)]ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Gibbons, G.W., Hawking, S.W.: Action integrals and partition functions in quantum gravity. Phys. Rev. D15(10), 2752 (1977)ADSGoogle Scholar
  52. 52.
    York Jr., J.W.: Role of conformal three-geometry in the dynamics of gravitation. Phys. Rev. Lett. 28(16), 1082 (1972)ADSCrossRefGoogle Scholar
  53. 53.
    Aref’eva, I.Y.: Non-Abelian Stokes formula. Theor. Math. Phys. 43(1), 353–356 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Montvay, I., Münster, G.: Quantum Fields on a Lattice. Cambridge University Press, Cambridge (1997)Google Scholar
  55. 55.
    Thurston, W.P., Levy, S.: Three-Dimensional Geometry and Topology, vol. 1. Princeton university press, Princeton (1997)CrossRefGoogle Scholar
  56. 56.
    Khatsymovsky, V.: Tetrad and self-dual formulations of Regge calculus. Class. Quantum Gravity 6(12), L249–L255 (1989)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Bander, M.: Functional measure for lattice gravity. Phys. Rev. Lett. 57, 1825 (1986)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Pontryagin, L.S.: Foundations of Combinatorial Topology. Courier Corporation, Chelmsford (1999)zbMATHGoogle Scholar
  59. 59.
    Lee, J.: Introduction to Topological Manifolds, vol. 940. Springer, Berlin (2010)Google Scholar
  60. 60.
    Pseudo-manifold. Encyclopedia of mathematics: http://www.encyclopediaofmath.org/index.php?title=Pseudo-manifold&oldid=24541. Accessed 13 Jan 2017
  61. 61.
    Spanier, E.H.: Algebraic Topology, vol. 55. Springer, Berlin (1994)zbMATHGoogle Scholar
  62. 62.
    Lazebnik, F.: On a regular simplex in \(\mathbb{R}^{n}\). http://www.math.udel.edu/~lazebnik/papers/simplex.pdf. Accessed 12 Feb 2017
  63. 63.
    Freudenthal, H.: Simplizialzerlegungen von beschrankter flachheit. Ann. Math. Second Ser. 43(3), 580–582 (1942)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Edelsbrunner, H., Grayson, D.R.: Edgewise subdivision of a simplex. Discrete Comput. Geom. 24(4), 707–719 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Wieland, W.M.: A new action for simplicial gravity in four dimensions. Class. Quantum Gravity 32(1), 015016 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Minkowski, H.: Allgemeine lehrsätze über die convexen polyeder. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse 1897, 198–220 (1897)zbMATHGoogle Scholar
  67. 67.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 1. Wiley, New York (1963)zbMATHGoogle Scholar
  68. 68.
    Barrett, J.W., Foxon, T.J.: Semiclassical limits of simplicial quantum gravity. Class. Quantum Gravity 11(3), 543 (1994)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Cheeger, J., et al.: Spectral geometry of singular Riemannian spaces. J. Differ. Geom. 18(4), 575–657 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Wintgen, P.: Normal cycle and integral curvature for polyhedra in Riemannian manifolds. In: Soos, Gy., Szenthe, J. (eds.) Differential Geometry. North-Holland Publishing Co., Amsterdam (1982)Google Scholar
  71. 71.
    Cheeger, J., Muller, W., Schrader, R.: On the curvature of piecewise flat spaces. Commun. Math. Phys. 92, 405 (1984)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Cattaneo, A.S., Mnev, P., Reshetikhin, N.: A cellular topological field theory (2017) arXiv:1701.05874
  73. 73.
    Dittrich, B., Geiller, M.: A new vacuum for loop quantum gravity. Class. Quantum Gravity 32(11), 112001 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Dittrich, B., Geiller, M.: Flux formulation of loop quantum gravity: classical framework. Class. Quantum Gravity 32(13), 135016 (2015)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Bahr, B., Dittrich, B., Geiller, M.: A new realization of quantum geometry (2015) arXiv:1506.08571
  76. 76.
    Dittrich, B., Geiller, M.: Quantum gravity kinematics from extended TQFTs. New J. Phys. 19(1), 013003 (2017)ADSCrossRefGoogle Scholar
  77. 77.
    Delcamp, C., Dittrich, B.: From 3D TQFTs to 4D models with defects. J. Math. Phys. 58(6), 062302 (2017)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Reisenberger, M.P.: Classical Euclidean general relativity from ’left-handed area = right-handed area’. Class. Quantum Gravity 16, 1357 (1999)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Ding, Y., Han, M., Rovelli, C.: Generalized spinfoams. Phys. Rev. D 83, 124020 (2011)ADSCrossRefGoogle Scholar
  80. 80.
    Wieland, W.: Discrete gravity as a topological gauge theory with light-like curvature defects. JHEP 5, 142 (2017)ADSzbMATHCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute for Quantum Gravity, Chair for Theoretical Physics IIIUniversity of Erlangen-NürnbergErlangenGermany
  2. 2.Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations