Skip to main content
Log in

The Kontsevich–Penner Matrix Integral, Isomonodromic Tau Functions and Open Intersection Numbers

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We identify the Kontsevich–Penner matrix integral, for finite size n, with the isomonodromic tau function of a \(3\times 3\) rational connection on the Riemann sphere with n Fuchsian singularities placed in correspondence with the eigenvalues of the external field of the matrix integral. By formulating the isomonodromic system in terms of an appropriate Riemann–Hilbert boundary value problem, we can pass to the limit \(n\rightarrow \infty \) (at a formal level) and identify an isomonodromic system in terms of Miwa variables, which play the role of times of a KP hierarchy. This allows to derive the String and Dilaton equations via a purely Riemann–Hilbert approach. The expression of the formal limit of the partition function as an isomonodromic tau function allows us to derive explicit closed formulæ for the correlators of this matrix model in terms of the solution of the Riemann Hilbert problem with all times set to zero. These correlators have been conjectured to describe the intersection numbers for Riemann surfaces with boundaries, or open intersection numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandrov, A., Buryak, A., Tessler, R.J.: Refined open intersection numbers and the Kontsevich–Penner matrix model. J. High Energy Phys. 2017(3), 123 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexandrov, A.: Open intersection numbers, Kontsevich–Penner model and cut-and-join operators. J. High Energy Phys. 2015(8), 28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexandrov, A.: Open intersection numbers, matrix models and MKP hierarchy. J. High Energy Phys. 2015(3), 42 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertola, M., Cafasso, M.: Darboux transformations and random point processes. Int. Math. Res. Not. 2015(15), 6211 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bertola, M., Cafasso, M.: The Kontsevich matrix integral: convergence to the Painlevé hierarchy and Stokes’ phenomenon. Commun. Math. Phys. 352(2), 585–619 (2017)

    Article  ADS  MATH  Google Scholar 

  6. Bertola, M., Dubrovin, B., Yang, D.: Correlation functions of the KdV hierarchy and applications to intersection numbers over \(\overline{\cal{M}}_{g, n}\). Phys. D Nonlinear Phenom. 327, 30–57 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bertola, M.: The dependence on the monodromy data of the isomonodromic tau function. Commun. Math. Phys. 294(2), 539–579 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Brezin, E., Hikami, S.: On an Airy matrix model with a logarithmic potential. J. Phys. A Math. Theor. 45(4), 045203 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Brezin, E., Hikami, S.: Random matrix, singularities and open/close intersection numbers. J. Phys. A Math. Theor. 48(47), 475201 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Buryak, A., Tessler, R.J.: Matrix models and a proof of the open analog of Witten’s conjecture. Commun. Math. Phys. 353(3), 1299–1328 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Buryak, A.: Open intersection numbers and the wave function of the KdV hierarchy. Moscow Math. J. 16(1), 27–44 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ince, E.L.: Ordinary Differential Equations. Dover Books on Mathematics. Dover Publications, Mineola (1956)

    Google Scholar 

  13. Itzykson, C., Zuber, J.B.: Combinatorics of the modular group. 2. The Kontsevich integrals. Int. J. Mod. Phys. A 7, 5661–5705 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Jimbo, M., Miwa, T.: Deformation of linear ordinary differential equations, II. Proc. Jpn. Acad. Ser. A Math. Sci. 56(4), 149–153 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jimbo, M., Miwa, T., Ueno, K.: Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and \(\tau \)-function. Phys. D Nonlinear Phenom. 2(2), 306–352 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Kharchev, S., Marshakov, A., Mironov, A., Morozov, A., Zabrodin, A.: Towards unified theory of 2d gravity. Nucl. Phys. B 380(1), 181–240 (1992)

    Article  ADS  Google Scholar 

  17. Kontsevich, M.: Intersection theory on the moduli space of curves and the matrix Airy function. Commun. Math. Phys. 147(1), 1–23 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Moore, G.: Geometry of the string equations. Commun. Math. Phys. 133(2), 261–304 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Moore, G.: Matrix models of \(2\)D gravity and isomonodromic deformation. Prog. Theor. Phys. Suppl. 102, 255–285 (1991)

    Article  ADS  MATH  Google Scholar 

  20. Olver, F.: Asymptotics and Special Functions. AKP Classics. Taylor and Francis, Routledge (1997)

    Book  Google Scholar 

  21. Penner, R.C.: Perturbative series and the moduli space of Riemann surfaces. J. Differ. Geom. 27(1), 35–53 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pandharipande, R., Solomon, J.P., Tessler, R.J.: Intersection theory on moduli of disks, open KdV and Virasoro (2014). arXiv:1409.2191

  23. Safnuk, B.: Combinatorial models for moduli spaces of open Riemann surfaces (2016). arXiv:1609.07226v2

  24. Tessler, R.J.: The combinatorial formula for open gravitational descendents (2015). arXiv:1507.04951v3

  25. Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Dover Phoenix Editions. Dover, Mineola (2002)

    Google Scholar 

  26. Witten, E.: Two-dimensional gravity and intersection theory on moduli space. Surv. Diff. Geom. 1, 243–310 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of M. B. was supported in part by the Natural Sciences and Engineering Research Council of Canada grant RGPIN-2016-06660. G. R. wishes to thank the Department of Mathematics and Statistics at Concordia University for hospitality during which the work was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bertola.

Additional information

Communicated by Jean-Michel Maillet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertola, M., Ruzza, G. The Kontsevich–Penner Matrix Integral, Isomonodromic Tau Functions and Open Intersection Numbers. Ann. Henri Poincaré 20, 393–443 (2019). https://doi.org/10.1007/s00023-018-0737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0737-8

Navigation