Skip to main content
Log in

Autonomous Quantum Machines and Finite-Sized Clocks

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

Processes such as quantum computation, or the evolution of quantum cellular automata, are typically described by a unitary operation implemented by an external observer. In particular, an interaction is generally turned on for a precise amount of time, using a classical clock. A fully quantum mechanical description of such a device would include a quantum description of the clock whose state is generally disturbed because of the back-reaction on it. Such a description is needed if we wish to consider finite-sized autonomous quantum machines requiring no external control. The extent of the back-reaction has implications on how small the device can be, on the length of time the device can run, and is required if we want to understand what a fully quantum mechanical treatment of an observer would look like. Here, we consider the implementation of a unitary by a finite-sized device and show that the back-reaction on it can be made exponentially small in the device’s dimension while its energy only increases linearly with dimension. As a result, an autonomous quantum machine need only be of modest size and energy. We are also able to solve a long-standing open problem by using a finite-sized quantum clock to approximate the continuous evolution of an idealised clock. The result has implications for how well quantum devices can be controlled and on the equivalence of different paradigms of control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Howard, J.: Molecular motors: structural adaptations to cellular functions. Nature 389(6651), 561–567 (1997)

    Article  ADS  Google Scholar 

  2. Frank, J. (ed.): Molecular Machines in Biology. Cambridge University Press, Cambridge (2011). Cambridge Books Online

    Google Scholar 

  3. Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070), 831–834 (2012)

    Article  ADS  Google Scholar 

  4. Scovil, H.E.D., Schulz-DuBois, E.O.: Three-level masers as heat engines. Phys. Rev. Lett. 2, 262–263 (1959)

    Article  ADS  Google Scholar 

  5. Geusic, J.E., Schulz-DuBois, E.O., Scovil, H.E.D.: Quantum equivalent of the carnot cycle. Phys. Rev. 156, 343–351 (1967)

    Article  ADS  Google Scholar 

  6. Linden, N., Popescu, S., Skrzypczyk, P.: How small can thermal machines be? The smallest possible refrigerator. Phys. Rev. Lett. 105(13), 130401 (2010)

    Article  ADS  Google Scholar 

  7. Brask, J.B., Haack, G., Brunner, N., Huber, M.: Autonomous quantum thermal machine for generating steady-state entanglement. New J. Phys. 17(11), 113029 (2015)

    Article  ADS  Google Scholar 

  8. Brandão, F.G.S.L., Horodecki, M., Oppenheim, J., Renes, J.M., Spekkens, R.W.: Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111(25), 250404 (2013)

    Article  ADS  Google Scholar 

  9. Malabarba, A.S.L., Short, A.J., Kammerlander, P.: Clock-driven quantum thermal engines. New J. Phys. 17(4), 045027 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. Tonner, F., Mahler, G.: Autonomous quantum thermodynamic machines. Phys. Rev. E 72(6), 066118 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Gelbwaser-Klimovsky, D., Kurizki, G.: Heat-machine control by quantum-state preparation: from quantum engines to refrigerators. Phys. Rev. E 90(2), 022102 (2014)

    Article  ADS  Google Scholar 

  12. Correa, L.A., Palao, J.P., Alonso, D., Adesso, G.: Quantum-enhanced absorption refrigerators. Sci. Rep. 4, 3949 (2014)

    Google Scholar 

  13. Tonner, F., Mahler, G.: Quantum Limit of the Carnot Engine. 1807–2007 Knowledge for Generations (2007)

  14. Feynman, R.P.: The Feynman Lectures on Physics, vol. 2. Addison-Wesley, Boston (1963)

    Google Scholar 

  15. Linden, N., Popescu, S., Skrzypczyk, P.: How small can thermal machines be? The smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010)

    Article  ADS  Google Scholar 

  16. Erker, P., Mitchison, M.T., Silva, R., Woods, M.P., Brunner, N., Huber, M.: Autonomous quantum clocks: Does thermodynamics limit our ability to measure time? Phys. Rev. X 7, 031022 (2017)

    Google Scholar 

  17. Geusic, J.E., Schulz-DuBios, E.O., Scovil, H.E.D.: Quantum equivalent of the Carnot cycle. Phys. Rev. 156, 343–351 (1967)

    Article  ADS  Google Scholar 

  18. Brandão, F., Horodecki, M., Ng, N., Oppenheim, J., Wehner, S.: The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. 112(11), 3275–3279 (2015)

    Article  ADS  Google Scholar 

  19. van Dam, W., Hayden, P.: Universal entanglement transformations without communication. Phys. Rev. A 67(6), 060302 (2003)

    Article  MathSciNet  Google Scholar 

  20. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  21. Ranković, S., Liang, Y.C., Renner, R.: Quantum clocks and their synchronisation—the alternate ticks game (2015). arXiv:1506.01373v1

  22. Peres, A.: Measurement of time by quantum clocks. Am. J. Phys. 48(7), 552 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  23. Bužek, V., Derka, R., Massar, S.: Optimal quantum clocks. Phys. Rev. Lett. 82, 2207–2210 (1999)

    Article  ADS  Google Scholar 

  24. Allcock, G.R.: The time of arrival in quantum mechanics i. Formal considerations. Ann. Phys. 53(2), 253–285 (1969)

    Article  ADS  Google Scholar 

  25. Salecker, H., Wigner, E.P.: Quantum limitations of the measurement of space-time distances. Phys. Rev. 109, 571–577 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Frenzel, M.F., Jennings, D., Rudolph, T.: Quasi-autonomous quantum thermal machines and quantum to classical energy flow. New J. Phys. 18(2), 023037 (2016)

    Article  ADS  Google Scholar 

  27. Pauli, W.: Handbuch der Physik, vol. 24, pp. 83–272. Springer, Berlin (1933)

    Google Scholar 

  28. Pauli, W.: Encyclopedia of Physics, vol. 1, p. 60. Springer, Berlin (1958)

    Google Scholar 

  29. Gross, D., Nesme, V., Vogts, H., Werner, R.F.: Index theory of one dimensional quantum walks and cellular automata. Commun. Math. Phys. 310(2), 419–454 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Massar, S., Spindel, P.: Uncertainty relation for the discrete fourier transform. Phys. Rev. Lett. 100, 190401 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Woods, M.P., Silva, R., Pütz, G., Stupar, S.R., Renner, R.: Quantum clocks are more accurate than classical ones. ArXiv:1806.00491

  32. Pegg, D.T., Barnett, S.M.: Phase properties of the quantized single-mode electromagnetic field. Phys. Rev. A 39, 1665–1675 (1989)

    Article  ADS  Google Scholar 

  33. Busch, P.: No information without disturbance: quantum limitations of measurement. In: Christian, W., Myrvold, J. (eds.) Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle: An International Conference in Honour of Abner Shimony. Springer (2006). arXiv:0706.3526v1

  34. Busch, P.: The time–energy uncertainty relation. In: Muga, J.G., Sala Mayato, R., Egusquiza, I.L. (eds.) Time in Quantum Mechanics, 2nd edn, pp. 69–98. Springer, Berlin (2002)

    Chapter  MATH  Google Scholar 

  35. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  ADS  Google Scholar 

  36. Abramowitz, M., Stegun, I.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. Am. J. Phys. 56, 958 (1988)

    Article  ADS  MATH  Google Scholar 

  37. Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions, 2 edn. Birkhäuser, Basel (2002). https://doi.org/10.1007/978-0-8176-8134-0

  38. Berend, D., Tassa, T.: Improved bounds on bell numbers and on moments of sums of random variables. Probab. Math. Stat. 30, 185–205 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Sophus, L., Friedrich, E.: Theorie der Transformationsgruppen. 1st edition, Leipzig; 2nd edition, AMS Chelsea Publishing, 1970 (1888)

  40. Garrison, J.C., Wong, J.: Canonically conjugate pairs, uncertainty relations, and phase operators. J. Math. Phys. 11, 2242–2249 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Fourier Analysis, self-Adjointness. Number v. 2 in Methods of Modern Mathematical Physics. Academic Press, London (1975)

    MATH  Google Scholar 

  42. Weyl, H.: Quantenmechanik und gruppentheorie. Z. Phys. 46(1), 1–46 (1927)

    Article  ADS  MATH  Google Scholar 

  43. Grafakos, L.: Classical Fourier Analysis. Springer, Berlin (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mischa P. Woods.

Additional information

Communicated by David Pérez-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woods, M.P., Silva, R. & Oppenheim, J. Autonomous Quantum Machines and Finite-Sized Clocks. Ann. Henri Poincaré 20, 125–218 (2019). https://doi.org/10.1007/s00023-018-0736-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0736-9

Navigation