Skip to main content
Log in

The Reduced Phase Space of Palatini–Cartan–Holst Theory

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

General relativity in four dimensions can be reformulated as a gauge theory, referred to as Palatini–Cartan–Holst theory. This paper describes its reduced phase space using a geometric method due to Kijowski and Tulczyjew and its relation to that of the Einstein–Hilbert approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 18 (1986)

    Article  MathSciNet  Google Scholar 

  2. Barbero, G,J.F.: Real Ashtekar variables for Lorentzian signature space-times. Phys. Rev. D 51, 5507 (1995)

    ADS  MathSciNet  Google Scholar 

  3. Batalin, I.A., Fradkin, E.S.: A generalized canonical formalism and quantization of reducible gauge theories. Phys. Lett. B 122(2), 157–164 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Batalin, I.A., Vilkovisky, G.A.: Relativistic S-matrix of dynamical systems with boson and fermion constraints. Phys. Lett. B 69(3), 309–312 (1977)

    Article  ADS  Google Scholar 

  5. Batalin, I.A., Vilkovisky, G.A.: Gauge algebra and quantization. Phys. Lett. B 102(1), 27–31 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  6. Blagojević, M., Hehl, F.W.: Gauge Theories of Gravitation: A Reader with Commentaries. Imperial College Press, London (2013)

    Book  MATH  Google Scholar 

  7. Cartan, E.: Sur une généralisation de la notion de courbure de Riemann et les espaces á torsion. C. R. Acad. Sci. 174, 593–595 (1922). (Comptes rendus hebdomadaires des séances de l’Académie des sciences 174, 437–439, 593–595, 734–737, 857–860, 1104–1107)

    MATH  Google Scholar 

  8. Cattaneo, A.S., Mnëv, P., Reshetikhin, N.: Classical BV theories on manifolds with boundary. Commun. Math. Phys. 332(2), 535–603 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cattaneo, A.S., Mnev, P., Reshetikin, N.: Classical and quantum Lagrangian field theories with boundary. In: Proceedings of the Corfu Summer Institute 2011 School and Workshops on Elementary Particle Physics and Gravity, Corfu, Greece, PoS(Corfu2011)044 (2011)

  10. Cattaneo, A.S., Schiavina, M.: BV-BFV approach to general relativity, Einstein–Hilbert action. J. Math. Phys. 57(2), 023515 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Cattaneo, A.S., Schiavina, M.: BV-BFV approach to General Relativity: Palatini–Cartan–Holst action. arXiv:1707.06328

  12. Cattaneo, A.S., Schiavina, M.: On time. Lett. Math. Phys. 107(2), 375–408 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Cattaneo, A.S., Schiavina, M., Selliah, I.: BV equivalence between triadic gravity and BF theory in three dimensions. Lett. Math. Phys. 108, 1873–1884 (2018). https://doi.org/10.1007/s11005-018-1060-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Dirac, P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  15. Einstein, A.: Einheitliche Feldtheorie yon Gravitation und Elektrizität. Sitzungsber. Pruess. Akad. Wiss. 414 (1925)

  16. Ferraris, M., Francaviglia, M., Reina, C.: Variational formulation of general relativity from 1915 to 1925 “Palatini’s method” discovered by Einstein in 1925. Gen. Relativ. Gravit. 14(3), 243–254 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Floreanini, R., Percacci, R.: Palatini formalism and new canonical variables for GL(4)-invariant gravity. Class. Quantum Gravity 7, 1805 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. 7(1), 65–222 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hojman, R., Mukku, C., Sayed, W.A.: Parity violation in metric-torsion theories of gravitation. Phys. Rev. D 22, 1915 (1980)

    Article  ADS  Google Scholar 

  20. Holst, S.: Barbero’s Hamiltonian derived from a generalized Hilbert–Palatini action. Phys. Rev. D 53, 5966 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. Immirzi, G.: Real and complex connections for canonical gravity. Class. Quantum Gravity 14, L177 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kibble, T.W.B.: Lorentz invariance and the gravitational field. J. Math. Phys. 2, 212 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kijowski, J., Tulczyjew, W.M.: A Symplectic Framework for Field Theories. Lecture notes in Physics, vol. 107. Springer, Berlin (1979)

  24. Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121–130 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Palatini, A.: Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton. Rend. Circ. Mat. Palermo 43, 203 (1919). (English translation by R.Hojman and C. Mukku in P.G. Bergmann and V. De Sabbata (eds.) Cosmology and Gravitation, Plenum Press, New York (1980))

    Article  MATH  Google Scholar 

  26. Perez, A., Rezende, D.J.: Four-dimensional Lorentzian Holst action with topological terms. Phys. Rev. D 79, 064026 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Rovelli, C., Thiemann, T.: Immirzi parameter in quantum general relativity. Phys. Rev. D 57, 1009 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  28. Schaetz, F.: BFV-complex and higher homotopy structures. Commun. Math. Phys. 286(2), 399–443 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  29. Schaetz, F.: Invariance of the BFV complex. Pac. J. Math. 248(2), 453–474 (2010)

    Article  MathSciNet  Google Scholar 

  30. Schiavina, M.: BV-BFV Approach to General Relativity. PhD Thesis, University of Zürich (2016)

  31. Sciama, D.: The physical structure of general relativity. Rev. Mod. Phys. 36, 463 (1964)

    Article  ADS  Google Scholar 

  32. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  33. Wise, D.: Symmetric space Cartan connections and gravity in three and four dimensions. SIGMA 5, 080 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Giovanni Canepa for several constructive discussions, and Friedrich Hehl for valuable comments about the controversy in the nomenclature. We thank G. Canepa and the anonymous referee for having found flaws in previous versions of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Schiavina.

Additional information

Communicated by Krzysztof Gawedzki.

This research was (partly) supported by the NCCR SwissMAP, funded by the Swiss National Science Foundation and by the COST Action MP1405 QSPACE, supported by COST (European Cooperation in Science and Technology). A. S. C. acknowledges partial support of SNF Grant No. 200020_172498\(\slash \)1. M. S. is supported by SNF Grant No. P2ZHP2_164999.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cattaneo, A.S., Schiavina, M. The Reduced Phase Space of Palatini–Cartan–Holst Theory. Ann. Henri Poincaré 20, 445–480 (2019). https://doi.org/10.1007/s00023-018-0733-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0733-z

Navigation