Skip to main content
Log in

Universality and Optimality in the Information–Disturbance Tradeoff

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We investigate the tradeoff between the quality of an approximate version of a given measurement and the disturbance it induces in the measured quantum system. We prove that if the target measurement is a non-degenerate von Neumann measurement, then the optimal tradeoff can always be achieved within a two-parameter family of quantum devices that is independent of the chosen distance measures. This form of almost universal optimality holds under mild assumptions on the distance measures such as convexity and basis independence, which are satisfied for all the usual cases that are based on norms, transport cost functions, relative entropies, fidelities, etc., for both worst-case and average-case analyses. We analyze the case of the cb-norm (or diamond norm) more generally for which we show dimension independence of the derived optimal tradeoff for general von Neumann measurements. A SDP solution is provided for general POVMs and shown to exist for arbitrary convex semialgebraic distance measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Commun. Math. Phys. 17(3), 239–260 (1970)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Lüders, G.: Über die Zustandsänderung durch den Meßprozeß. Ann. Phys. 443(5–8), 322–328 (1950)

    Article  MATH  Google Scholar 

  3. Bennet, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

  4. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Fuchs, C.A., Peres, A.: Quantum-state disturbance versus information gain: uncertainty relations for quantum information. Phys. Rev. A 53, 2038–2045 (1996)

    Article  ADS  Google Scholar 

  6. Fuchs, C.A.: Information Gain vs. State Disturbance in Quantum Theory. Ch. 13. Wiley, London (2005)

    Google Scholar 

  7. Martens, H., de Muynck, W.M.: Disturbance, conservation laws and the uncertainty principle. J. Phys. A 25(18), 4887 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ozawa, M.: Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement. Phys. Rev. A 67, 042105 (2003)

    Article  ADS  Google Scholar 

  9. Ozawa, M.: Uncertainty relations for noise and disturbance in generalized quantum measurements. Ann. Phys. 311(2), 350–416 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Heinosaari, T., Wolf, M.M.: Nondisturbing quantum measurements. J. Math. Phys. 51(9), 092201 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Watanabe, Y., Ueda, M.: Quantum estimation theory of error and disturbance in quantum measurement. ArXiv e-prints (2011)

  12. Ipsen, A.C.: Error-disturbance relations for finite dimensional systems. ArXiv e-prints (2013)

  13. Busch, P., Lahti, P., Werner, R.F.: Proof of Heisenberg’s error-disturbance relation. Phys. Rev. Lett. 111, 160405 (2013)

    Article  ADS  Google Scholar 

  14. Busch, P., Lahti, P., Werner, R.F.: Colloquium: quantum root-mean-square error and measurement uncertainty relations. Rev. Mod. Phys. 86, 1261–1281 (2014)

    Article  ADS  Google Scholar 

  15. Branciard, C.: How well can one jointly measure two incompatible observables on a given quantum state? Proc. Natl. Acad. Sci. USA 110, 6742–6747 (2013)

    Article  ADS  Google Scholar 

  16. Buscemi, F., Hall, M.J.W., Ozawa, M., Wilde, M.M.: Noise and disturbance in quantum measurements: an information-theoretic approach. Phys. Rev. Lett. 112, 050401 (2014)

    Article  ADS  Google Scholar 

  17. Coles, P.J., Furrer, F.: State-dependent approach to entropic measurement-disturbance relations. Phys. Lett. A 379, 105–112 (2015)

    Article  ADS  MATH  Google Scholar 

  18. Schwonnek, R., Reeb, D., Werner, R.F.: Measurement uncertainty for finite quantum observables. Mathematics 4, 38 (2016)

    Article  MATH  Google Scholar 

  19. Renes, J.M., Scholz, V.B., Huber, S.: Uncertainty relations: an operational approach to the error-disturbance tradeoff. Quantum 1, 20 (2017)

    Article  Google Scholar 

  20. Banaszek, K.: Fidelity balance in quantum operations. Phys. Rev. Lett. 86, 1366–1369 (2001)

    Article  ADS  Google Scholar 

  21. Barnum, H.: Information-disturbance tradeoff in quantum measurement on the uniform ensemble. In: Proceedings of IEEE International Symposium on Information Theory, p. 277 (2001)

  22. Maccone, L.: Entropic information-disturbance tradeoff. Europhys. Lett. 77(4), 40002 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. Kretschmann, D., Schlingemann, D., Werner, R.F.: The information-disturbance tradeoff and the continuity of Stinespring’s representation. IEEE Trans. Inf. Theory 54, 1708–1717 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Buscemi, F., Hayashi, M., Horodecki, M.: Global information balance in quantum measurements. Phys. Rev. Lett. 100, 210504 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Buscemi, F., Horodecki, M.: Towards a unified approach to information-disturbance tradeoffs in quantum measurements. Open Syst. Inf. Dyn. 16(01), 29–48 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bisio, A., Chiribella, G., D’Ariano, G.M., Perinotti, P.: Information-disturbance tradeoff in estimating a unitary transformation. Phys. Rev. A 82, 062305 (2010)

    Article  ADS  Google Scholar 

  27. Shitara, T., Kuramochi, Y., Ueda, M.: Trade-off relation between information and disturbance in quantum measurement. Phys. Rev. A 93, 032134 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. Knips, L., Dziewior, J., Hashagen, A.K., Meinecke, J., Weinfurter, H., Wolf, M.M.: Measurement-disturbance tradeoff outperforming optimal cloning (In preparation) (2018)

  29. Hiai, F., Mosonyi, M., Petz, D., Bény, C.: Quantum f-divergences and error correction. Rev. Math. Phys. 23(07), 691–747 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Farenick, D.R.: Algebras of Linear Transformations. Universitext, 1st edn. Springer, New York (2001)

    Book  MATH  Google Scholar 

  31. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Vol. 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge/A Series of Modern Surveys in Mathematics, 1st edn. Springer, Berlin (1998)

    Google Scholar 

  32. Karow, M.: Geometry of spectral value sets. Ph.D. thesis, Universität Bremen (2003)

  33. Marshall, M.: Positive Polynomials and Sums of Squares. Vol. 146 of Mathematical Surveys and Monographs. American Mathematical Society, New Yok (2008)

    Book  Google Scholar 

  34. Wolf, M.M., Cubitt, T.S., Perez-Garcia, D.: Are problems in quantum information theory (un)decidable? ArXiv e-prints (2011)

  35. Scheiderer, C.: Semidefinite representation for convex hulls of real algebraic curves. ArXiv e-prints (2017)

  36. Scheiderer, C.: Spectrahedral shadows. ArXiv e-prints (2017)

  37. Watrous, J.: Semidefinite programs for completely bounded norms. ArXiv e-prints (2009)

  38. Watrous, J.: Simpler semidefinite programs for completely bounded norms. ArXiv e-prints (2012)

  39. CVX Research, I.: CVX: Matlab software for disciplined convex programming, version 2.0 (2012). http://cvxr.com/cvx

  40. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control. Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, Berlin (2008)

    Google Scholar 

  41. The MathWorks Inc: MATLAB and Statistics Toolbox Release R2014b. Natick, Massachusetts, USA (2014)

Download references

Acknowledgements

The authors would like to thank Teiko Heinosaari for many useful comments. AKHs work is supported by the Elite Network of Bavaria through the PhD program of excellence Exploring Quantum Matter. This research was supported in part by the National Science Foundation under Grant No. NSF PHY11-25915.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna-Lena K. Hashagen.

Additional information

Communicated by David Pérez-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashagen, AL.K., Wolf, M.M. Universality and Optimality in the Information–Disturbance Tradeoff. Ann. Henri Poincaré 20, 219–258 (2019). https://doi.org/10.1007/s00023-018-0724-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0724-0

Navigation