Annales Henri Poincaré

, Volume 19, Issue 10, pp 2979–3005 | Cite as

Entanglement in Non-local Games and the Hyperlinear Profile of Groups

  • William Slofstra
  • Thomas VidickEmail author


We relate the amount of entanglement required to play linear system non-local games near-optimally to the hyperlinear profile of finitely presented groups. By calculating the hyperlinear profile of a certain group, we give an example of a finite non-local game for which the amount of entanglement required to play \(\epsilon \)-optimally is at least \(\Omega (1/\epsilon ^k)\), for some \(k>0\). Since this function approaches infinity as \(\epsilon \) approaches zero, this provides a quantitative version of a theorem of the first author.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



As mentioned in Introduction, we are grateful to Narutaka Ozawa for suggesting the use of the Connes embedding trick and the beautiful line of argument now incorporated in Sect. 5; this led to a substantial improvement in our results. The first author also thanks Martino Lupini for helpful discussions. The second author is supported by NSF CAREER Grant CCF-1553477, AFOSR YIP Award Number FA9550-16-1-0495, a CIFAR Azrieli Global Scholar award, and the IQIM, an NSF Physics Frontiers Center (NSF Grant PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-12500028).


  1. 1.
    Cavaleri, M.: Algorithms and quantifications in amenable and sofic groups. Ph.D. thesis, Università di Roma La Sapienza (2016)Google Scholar
  2. 2.
    Cleve, R., Liu, L., Slofstra, W.: Perfect commuting-operator strategies for linear system games. J. Math. Phys. 58, 012202 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cleve, R., Mittal, R.: Characterization of binary constraint system games. In: Automata, Languages, and Programming. Lecture Notes in Computer Science, vol. 8572, pp. 320–331. Springer, Berlin (2014). arXiv:1209.2729
  4. 4.
    Coudron, M., Natarajan, A.: The parallel-repeated magic square game is rigid. Tech. report (2016). arXiv:1609.06306
  5. 5.
    Coladangelo, A.W.: Parallel self-testing of (tilted) EPR pairs via copies of (tilted) CHSH. Quantum Inf. Comput. 17(9), 831–865 (2017)MathSciNetGoogle Scholar
  6. 6.
    Connes, A.: Classification of injective factors cases II1, II, III, 1. Ann. Math. 104(1), 73–115 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cornulier, Y.: Sofic profile and computability of Cremona groups. Mich. Math. J. 62(4), 823–841 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chao, R., Reichardt, B.W., Sutherland, C., Vidick, T.: Test for a large amount of entanglement, using few measurements. In: Proceedings of the 2017 Conference on Innovations in Theoretical Computer Science (ITCS) (2017)Google Scholar
  9. 9.
    Fritz, T.: On infinite-dimensional state spaces. J. Math. Phys. 54(5), 052107 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hadwin, D., Shulman, T.: Stability of group relations under small Hilbert–Schmidt perturbations. J. Funct. Anal. 275(4), 761–792 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Junge, M., Oikhberg, T., Palazuelos, C.: Reducing the number of inputs in nonlocal games. J. Math. Phys. 57(10), 102203 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Junge, M., Palazuelos, C.: Large violation of bell inequalities with low entanglement. Commun. Math. Phys. 306(3), 695–746 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Junge, M., Palazuelos, C., Pérez-García, D., Villanueva, I., Wolf, M.M.: Unbounded violations of bipartite bell inequalities via operator space theory. Commun. Math. Phys. 300(3), 715–739 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mančinska, L.: Maximally Entangled State in Pseudo-Telepathy Games. Computing with New Resources, pp. 200–207. Springer, Berlin (2014)zbMATHGoogle Scholar
  15. 15.
    Natarajan, A., Vidick, T.: A quantum linearity test for robustly verifying entanglement. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (New York, NY, USA), STOC, pp. 1003–1015. ACM (2017)Google Scholar
  16. 16.
    Ostrev, D., Vidick, T.: Entanglement of approximate quantum strategies in XOR games. Quantum Inf. Comput. 18(7 & 8), 0617–0631 (2018)MathSciNetGoogle Scholar
  17. 17.
    Pérez-García, D., Wolf, M.M., Palazuelos, C., Villanueva, I., Junge, M.: Unbounded violation of tripartite bell inequalities. Commun. Math. Phys. 279(2), 455–486 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Paulsen, V.I., Severini, S., Stahlke, D., Todorov, I.G., Winter, A.: Estimating quantum chromatic numbers. J. Funct. Anal. 270(6), 2188–2222 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Slofstra, W.: Lower bounds on the entanglement needed to play XOR non-local games. J. Math. Phys. 52(10), 102202 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Slofstra, W.: The set of quantum correlations is not closed (2017). arXiv:1703.08618

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Pure Mathematics, Institute for Quantum ComputingUniversity of WaterlooWaterlooCanada
  2. 2.Department of Computing and Mathematical SciencesCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations