Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Annales Henri Poincaré
  3. Article

Quantum Lattice Gauge Fields and Groupoid \(\hbox {C}^{*}\)-Algebras

  • Open access
  • Published: 06 August 2018
  • Volume 19, pages 3241–3266, (2018)
  • Cite this article
Download PDF

You have full access to this open access article

Annales Henri Poincaré Aims and scope Submit manuscript
Quantum Lattice Gauge Fields and Groupoid \(\hbox {C}^{*}\)-Algebras
Download PDF
  • Francesca Arici1,
  • Ruben Stienstra1 &
  • Walter D. van Suijlekom1 
  • 477 Accesses

  • 3 Citations

  • 3 Altmetric

  • Explore all metrics

Abstract

We present an operator-algebraic approach to the quantization and reduction of lattice field theories. Our approach uses groupoid \(\hbox {C}^{*}\)-algebras to describe the observables. We introduce direct systems of Hilbert spaces and direct systems of (observable) \(\hbox {C}^{*}\)-algebras, and, dually, corresponding inverse systems of configuration spaces and (pair) groupoids. The continuum and thermodynamic limit of the theory can then be described by taking the corresponding limits, thereby keeping the duality between the Hilbert space and observable \(\hbox {C}^{*}\)-algebra on the one hand, and the configuration space and the pair groupoid on the other. Since all constructions are equivariant with respect to the gauge group, the reduction procedure applies in the limit as well.

Article PDF

Download to read the full article text

Similar content being viewed by others

Strict deformation quantization of abelian lattice gauge fields

Article 02 April 2022

Gauge choices and entanglement entropy of two dimensional lattice gauge fields

Article Open access 13 March 2018

Operator-Algebraic Construction of Gauge Theories and Jones’ Actions of Thompson’s Groups

Article 04 November 2019
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Aastrup, J., Grimstrup, J.M.: Intersecting quantum gravity with noncommutative geometry: a review. SIGMA 8, 018 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Aastrup, J., Grimstrup, J.M., Nest, R.: On spectral triples in quantum gravity. II. J. Noncommut. Geom. 3, 47–81 (2009)

    Article  MathSciNet  Google Scholar 

  3. Ashtekar, A., Lewandowski, J.: Representation theory of analytic holonomy \(\text{C}^{\ast }\)- algebras. Knots Quantum Gravity 21–61 (1994)

  4. Araki, H., Woods, E.J.: Representations of the canonical commutation relations describing a nonrelativistic infinite free Bose gas. J. Math. Phys. 4, 637–662 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  5. Ashtekar, A., Lewandowski, J., Marolf, D., Mourão, J., Thiemann, T.: Coherent state transforms for spaces of connections. J. Funct. Anal. 135, 519–551 (1996)

    Article  MathSciNet  Google Scholar 

  6. Baez, J.C.: Generalized measures in gauge theory. Lett. Math. Phys. 31, 213–223 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  7. Baez, J.C.: Spin networks in gauge theory. Adv. Math. 117, 253–272 (1996)

    Article  MathSciNet  Google Scholar 

  8. Buneci, M.R.: Groupoid \(\text{ C }^{\ast }\)-algebras. Surv. Math. Appl. 1, 71–98 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Dirac, P.A.M.: Generalized Hamiltonian dynamics. Can. J. Math. 2, 129–148 (1950)

    Article  MathSciNet  Google Scholar 

  10. Fischer, E., Rudolph, G., Schmidt, M.: A lattice gauge model of singular Marsden–Weinstein reduction. Part I. Kinematics. J. Geom. Phys. 57, 1193–1213 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. Grundling, H., Rudolph, G.: QCD on an infinite lattice. Commun. Math. Phys. 318, 717–766 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. Grundling, H., Rudolph, G.: Dynamics for QCD on an infinite lattice. Commun. Math. Phys. 349, 1163–1202 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hall, B.: The Segal–Bargmann “coherent state” transform for compact lie groups. J. Funct. Anal. 122, 103–151 (1994)

    Article  MathSciNet  Google Scholar 

  14. Huebschmann, J.: Singular Poisson-Kähler geometry of stratified Kähler spaces and quantization. Trav. Math. 19, 27–63 (2011)

    MATH  Google Scholar 

  15. Huebschmann, J., Rudolph, G., Schmidt, M.: A gauge model for quantum mechanics on a stratified space. Commun. Math. Phys. 286, 459–494 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kijowski, J.: Symplectic geometry and second quantization. Rep. Math. Phys. 11, 97–109 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  17. Kijowski, J., Rudolph, G.: On the Gauss law and global charge for QCD. J. Math. Phys. 43, 1796–1808 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  18. Kijowski, J., Rudolph, G.: Charge superselection sectors for QCD on the lattice. J. Math. Phys. 46, 032303 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. Kijowski, J., Okołów, A.: A modification of the projective construction of quantum states for field theories. J. Math. Phys. 58, 062303 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Kogut, J., Susskind, L.: Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D 11, 395–408 (1975)

    Article  ADS  Google Scholar 

  21. Landsman, N.P.: Rieffel induction as generalized quantum Marsden–Weinstein reduction. J. Geom. Phys. 15, 285–319 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  22. Landsman, N.P.: Mathematical Topics Between Classical and Quantum Mechanics. Springer, Berlin (1998)

    Book  Google Scholar 

  23. Lanéry, S., Thiemann, T.: Projective limits of state spaces I. Classical formalism. J. Geom. Phys. 111, 6–39 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lanéry, S., Thiemann, T.: Projective limits of state spaces II. Quantum formalism. J. Geom. Phys. 116, 10–51 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Lanéry, S., Thiemann, T.: Projective limits of state spaces III. Toy-models. J. Geom. Phys. 123, 98–126 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. Lanéry, S., Thiemann, T.: Projective limits of state spaces IV. Fractal label sets. J. Geom. Phys. 123, 127–155 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lanéry, S.: Projective limits of state spaces: quantum field theory without a vacuum. EJTP 14, 1–20 (2018)

    Google Scholar 

  28. Lewandowski, J.: Topological measure and graph-differential geometry on the quotient space of connections. Int. J. Theoret. Phys. 3, 207–211 (1994)

    ADS  MathSciNet  Google Scholar 

  29. Maclane, S.: Categories for the Working Mathematician. Springer, Berlin (1998)

    MATH  Google Scholar 

  30. Marsden, J., Weinstein, A.: Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 5, 121–130 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  31. Marolf, D., Mourão, J.M.: On the support of the Ashtekar–Lewandowski measure. Comm. Math. Phys. 170, 583–605 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  32. Muhly, P.S., Renault, J.N., Williams, D.P.: Equivalence and isomorphism for groupoid \(\text{ C }^{\ast }\)- algebras. J. Oper. Theory 17, 3–22 (1987)

    MathSciNet  MATH  Google Scholar 

  33. Okołów, A.: Construction of spaces of kinematic quantum states for field theories via projective techniques. Class. Quantum Grav. 30, 195003 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  34. Paterson, A.: Groupoids, Inverse Semigroups, and their Operator Algebras. Birkhäuser, Basel (1999)

    Book  Google Scholar 

  35. Renault, J.: A Groupoid Approach to C\(^\ast \)-Algebras. Springer, Berlin (1980)

    Book  Google Scholar 

  36. Rendall, A.: Comment on a paper of A. Ashtekar and C. J. Isham. Class. Quantum Grav. 10, 605–608 (1993)

    Article  ADS  Google Scholar 

  37. Ribes, L., Zalesskii, P.: Profinite Groups. Springer, Berlin (2010)

    Book  Google Scholar 

  38. Rieffel, M.A.: Induced representation of C\(^\ast \)-algebras. Adv. Math. 13, 176–257 (1974)

    Article  Google Scholar 

  39. Rieffel, M.A.: Quantization and operator algebras. XIIth International Congress of Mathematical Physics (ICMP ’97) (Brisbane), 254–260, Int. Press, Cambridge, MA (1999)

  40. Rudin, W.: Functional Analysis. McGraw-hill, Inc., NY (1991)

    MATH  Google Scholar 

  41. Schwartz, L.: Radon Measures. Oxford University Press, Oxford (1973)

    MATH  Google Scholar 

  42. Yngvason, J.: The role of type III factors in quantum field theory. Rep. Math. Phys. 55, 135–147 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  43. Wilson, K.G.: Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands

    Francesca Arici, Ruben Stienstra & Walter D. van Suijlekom

Authors
  1. Francesca Arici
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ruben Stienstra
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Walter D. van Suijlekom
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Walter D. van Suijlekom.

Additional information

Communicated by Karl-Henning Rehren.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arici, F., Stienstra, R. & van Suijlekom, W.D. Quantum Lattice Gauge Fields and Groupoid \(\hbox {C}^{*}\)-Algebras. Ann. Henri Poincaré 19, 3241–3266 (2018). https://doi.org/10.1007/s00023-018-0717-z

Download citation

  • Received: 08 December 2017

  • Accepted: 08 May 2018

  • Published: 06 August 2018

  • Issue Date: November 2018

  • DOI: https://doi.org/10.1007/s00023-018-0717-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2024 Springer Nature