Annales Henri Poincaré

, Volume 19, Issue 10, pp 3089–3128 | Cite as

Inverse Scattering at Fixed Energy for Radial Magnetic Schrödinger Operators with Obstacle in Dimension Two

  • Damien GobinEmail author


We study an inverse scattering problem at fixed energy for radial magnetic Schrödinger operators on \(\mathbb {R}^2 {{\setminus }} B(0,r_0)\), where \(r_0\) is a positive and arbitrarily small radius. We assume that the magnetic potential A satisfies a gauge condition, and we consider the class \(\mathcal {C}\) of smooth, radial and compactly supported electric potentials and magnetic fields denoted by V and B, respectively. If (VB) and \((\tilde{V},\tilde{B})\) are two couples belonging to \(\mathcal {C}\), we then show that if the corresponding phase shifts \(\delta _l\) and \(\tilde{\delta }_l\) (i.e., the scattering data at fixed energy) coincide for all \(l \in \mathcal {L}\), where \(\mathcal {L} \subset \mathbb {N}^{\star }\) satisfies the Müntz condition \(\sum _{l \in \mathcal {L}} \frac{1}{l} = + \infty \), then \(V(x) = \tilde{V}(x)\) and \(B(x) = \tilde{B}(x)\) outside the obstacle \(B(0,r_0)\). The proof uses the complex angular momentum method and is close in spirit to the celebrated Borg–Marchenko uniqueness theorem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arians, S.: Geometric approach to inverse scattering for the Schrödinger equation with magnetic and electric potentials. J. Math. Phys. 38(6), 2761–2773 (1997)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bennewitz, C.: A proof of the local Borg–Marchenko Theorem. Commun. Math. Phys. 211, 131–132 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Boas, R.P.: Entire Functions. Academic Press, Cambridge (1954)zbMATHGoogle Scholar
  4. 4.
    Collins, P.D.B.: An introduction to Regge Theory and High Energy Physics. Cambridge Monographs on Mathematical Physics, Vol. 4 (1977)Google Scholar
  5. 5.
    Daudé, T., Gobin, D., Nicoleau, F.: Local inverse scattering results at fixed energy in spherically symmetric asymptotically hyperbolic manifolds. Inverse Probl. Imaging 10(3), 659–688 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Daudé, T., Kamran, N., Nicoleau, F.: Inverse scattering at fixed energy on asymptotically hyperbolic Liouville surfaces. Inverse Probl. (2015).
  7. 7.
    Daudé, T., Kamran, N., Nicoleau, F.: Non-uniqueness results for the anisotropic Calderon problem with data measured on disjoint sets. To appear in Ann. Henri Poincaré, (2015). ArXiv:1510.06559
  8. 8.
    Daudé, T., Nicoleau, F.: Direct and inverse scattering at fixed energy for massless charged Dirac fields by Kerr–Newman–De Sitter black holes. Memoirs of the AMS 247 no. 1170 (2017)Google Scholar
  9. 9.
    Daudé, T., Nicoleau, F.: Inverse scattering at fixed energy in de Sitter–Reissner–Nordström black holes. Ann. Henri Poincaré 12, 1–47 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Daudé, T., Nicoleau, F.: Local inverse scattering at a fixed energy for radial Schrödinger operators and localization of the Regge poles. Ann. Henri Poincaré 17, 2849–2904 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    de Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 2(115), 485–491 (1959)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    de Alfaro, V., Regge, T.: Potential Scattering. North-Holland Publishing Co., Amsterdam; Interscience Publishers Division John Wiley ans Sons, Inc. (1965)Google Scholar
  13. 13.
    de Oliveira, C.R., Pereira, M.: Scattering and self-adjoint extensions of the Aharonov–Bohm Hamiltonian. J. Phys. A 43, 1751–8113 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Eskin, G., Ralston, J.: Inverse scattering problem for the Schrödinger equation with magnetic potential at a fixed energy. Commun. Math. Phys. 173, 199–224 (1995)ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    Eskin, G., Ralston, J.: Inverse scattering problems for Schrödinger operators with magnetic and electric potentials. IMA Vol. Math. Appl. 90, 147–166 (1997)zbMATHGoogle Scholar
  16. 16.
    Gesztesy, F., Simon, B.: On local Borg–Marchenko uniqueness results. Commun. Math. Phys. 211, 273–287 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Grinevich, P.G., Novikov, R.: Transparent potentials at fixed energy in dimension two. Fixed energy dispersion relations for the fast decaying potentials. Commun. Math. Phys. 174, 409–446 (1995)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Krupchyk, K., Uhlmann, G.: Inverse problems for magnetic Schrödinger operators in transversally anisotropic geometries. Preprint. ArXiv:1702.07974 (2017)
  19. 19.
    Lebedev, N.N.: Special Functions and Their Applications. Prentice-Hall, Englewood Cliffs (1965)zbMATHGoogle Scholar
  20. 20.
    Loeffel, J.-J.: On an inverse problem in potential scattering theory. Ann. Iinst. H. Poincaré Phys. Théor. 8, 339–447 (1968)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Magnus, W., Oberhettinger, F., Soni, R.P.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin (1966)CrossRefzbMATHGoogle Scholar
  22. 22.
    Newton, R.G.: Scattering theory of waves and particles. Dover Publications, Mineola, (2002) (Reprint of the 1982 second edition New York: Springer, with list of errata prepared for this edition by the author)Google Scholar
  23. 23.
    Nicoleau, F.: Matrices de diffusion pour l’opérateur de Schrödinger avec champ magnétique. Phénomène de Aharonov-B-ohm. Ann. Inst. H. Poincaré Phys. Théor. 61(4), 329–346 (1994)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Nicoleau, F.: A stationary approach to inverse scattering for Schrödinger operators with first order perturbation. Commun. Partial Differ. Equ. 22, 527–553 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Nicoleau, F.: An inverse scattering problem with the Aharonov–Bohm effect. J. Math. Phys. 41(8), 5223–5237 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Novikov, R.G.: The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator. J. Funct. Anal. 103(2), 409–463 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Novikov, R.G.: The inverse scattering problem on a fixed energy level for the three-dimensional Schrödinger equation with an exponentially decreasing potential. Commun. Math. Phys. 161(3), 569–595 (1994)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Päivärinta, L., Salo, M., Uhlmann, G.: Inverse scattering for the magnetic Schrödinger operator. J. Funct. Anal. 258, 1771–1798 (2010)CrossRefzbMATHGoogle Scholar
  29. 29.
    Pankrashkin, K., Richard, S.: Spectral and scattering theory for the Aharonov Bohm operators. Rev. Math. Phys. 23, 53–81 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ramm, A.G.: An inverse scattering problem with part of the fixed-energy phase shifts. Commun. Math. Phys. 207(1), 231–247 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Scattering Theory, vol. 3. Academic Press, Cambridge (1979)zbMATHGoogle Scholar
  32. 32.
    Regge, T.: Introduction to complex orbita momenta. Nuevo Cimento XIV 5, 951–976 (1959)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Roux, Ph, Yafaev, D.: On the mathematical theory of the Aharonov–Bohm effect. J. Phys. A 35, 7481–7492 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Rudin, W.: Real and Complex Analysis, Third edn. McGraw-Hill Book Company, New York (1986)zbMATHGoogle Scholar
  35. 35.
    Ruisjenaars, S.N.M.: The Aharonov–Bohm effect and scattering theory. Ann. Phys. (NY) 146, 1–34 (1983)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    Sabatier, P.: Asymptotic properties of the potentials in the inverse scattering problem at fixed energy. J. Math. Phys. 7, 1515–1531 (1966)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    Simon, B.: A new approach to inverse spectral theory. I. Fundam. Formal. Ann. Math. 150, 1–29 (1999)MathSciNetGoogle Scholar
  38. 38.
    Tamura, H.: Shadow scattering by magnetic fields in two dimensions. Annales Inst. Henri Poincaré Phys. Theor. 63(3), 253–276 (1995)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Teschl, G.: Mathematical Methods in Quantum Mechanics. Graduate Studies in Mathematics Vol. 99, AMS Providence, Rhode Island (2009)Google Scholar
  40. 40.
    Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1958)Google Scholar
  41. 41.
    Weder, R.: The Aharonov–Bohm effect and time-dependent inverse scattering theory. Inverse Probl. 18, 1041–1056 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Weder, R., Yafaev, D.R.: On inverse scattering at a fixed energy for potentials with a regular behaviour at infinity. Inverse Probl. 21, 1937–1952 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Yafaev, D.R.: Scattering by magnetic fields. Algebra i Analiz 17, 244–272 (2005)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontréalCanada

Personalised recommendations