Abstract
We consider an atom described by Müller theory, which is similar to Hartree–Fock theory, but with a modified exchange term. We prove that a nucleus of charge Z can bind at most \(Z+C\) electrons, where C is a universal constant. Our proof proceeds by comparison with Thomas–Fermi theory, and a key ingredient is a novel bound on the number of electrons far from the nucleus.
Similar content being viewed by others
References
Lieb, E.H., Simon, B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)
Benguria, R.D., Lieb, E.H.: The most negative ion in the Thomas–Fermi–von Weizsäcker theory of atoms and molecules. J. Phys. B 18, 1045–1059 (1984)
Solovej, J.P.: Universality in the Thomas–Fermi–von Weizsäcker model of atoms and molecules. Commun. Math. Phys. 129, 561–598 (1990)
Solovej, J.P.: Proof of the ionization conjecture in a reduced Hartree–Fock model. Invent. Math. 104, 291–311 (1991)
Solovej, J.P.: The ionization conjecture in Hartree–Fock theory. Ann. Math. 158(2), 509–576 (2003)
Frank, R.L., Nam, P.T., Van Den Bosch, H.: The ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker theory. Commun. Pure Appl. Math. 71(3), 577–614 (2018)
Müller, A.M.K.: Explicit approximate relation between reduced two- and one-particle density matrices. Phys. Lett. A 105, 446–452 (1984)
Buijse, M.A., Baerends, E.J.: An approximate exchange-correlation hole density as a functional of the natural orbitals. Mol. Phys. 100, 401–421 (2002)
Frank, R.L., Lieb, E.H., Seiringer, R., Siedentop, H.: Müller’s exchange–correlation energy in density-matrix-functional theory. Phys. Rev. A 76, 052517 (2007)
Lieb, E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)
Lieb, E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29, 3018–3028 (1984)
Lenzmann, E., Lewin, M.: Dynamical ionization bounds for atoms. Anal. PDE 6, 1183–1211 (2013)
Nam, P.T.: New bounds on the maximum ionization of atoms. Commun. Math. Phys. 312, 427–445 (2012)
Nam, P.T., Van Den Bosch, H.: Nonexistence in Thomas–Fermi–Dirac–von Weizsäcker theory with small nuclear charges. Math. Phys. Anal. Geom. 20, 6 (2017)
Frank, R.L., Killip, R., Nam, P.T.: Nonexistence of large nuclei in the liquid drop model. Lett. Math. Phys. 106, 1033–1036 (2016)
Kehle, C.: The maximal excess charge for a family of density-matrix-functional theories including Hartree–Fock and Müller theories. J. Math. Phys. 58, 011901 (2017)
Siedentop, H.: The asymptotic behaviour of the ground state energy of the Müller functional for heavy atoms (German). J. Phys. A Math. Theor. 42, 085201 (2009)
Lieb, E.H., Thirring, W.E.: Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett. 35, 687 (1975)
Simon, B.: Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima: asymptotic expansions. Ann. Inst. Henri Poincaré Sect. A 38, 295–380 (1983)
Acknowledgements
The authors are grateful to Heinz Siedentop for a motivating discussion. Partial support by U.S. National Science Foundation DMS-1363432 (R.L.F.), Austrian Science Fund (FWF) Project Nr. P 27533-N27 (P.T.N.), CONICYT (Chile) through CONICYT–PCHA/Doctorado Nacional/2014, Fondecyt Project # 116–0856 and Iniciativa Científica Milenio (Chile) through Millennium Nucleus RC–120002 “Física Matemática” (H.V.D.B.) is acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Jan Derezinski.
Rights and permissions
About this article
Cite this article
Frank, R.L., Nam, P.T. & Van Den Bosch, H. The Maximal Excess Charge in Müller Density-Matrix-Functional Theory. Ann. Henri Poincaré 19, 2839–2867 (2018). https://doi.org/10.1007/s00023-018-0695-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-018-0695-1