Skip to main content
Log in

The Maximal Excess Charge in Müller Density-Matrix-Functional Theory

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider an atom described by Müller theory, which is similar to Hartree–Fock theory, but with a modified exchange term. We prove that a nucleus of charge Z can bind at most \(Z+C\) electrons, where C is a universal constant. Our proof proceeds by comparison with Thomas–Fermi theory, and a key ingredient is a novel bound on the number of electrons far from the nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lieb, E.H., Simon, B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23, 22–116 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benguria, R.D., Lieb, E.H.: The most negative ion in the Thomas–Fermi–von Weizsäcker theory of atoms and molecules. J. Phys. B 18, 1045–1059 (1984)

    Article  ADS  Google Scholar 

  3. Solovej, J.P.: Universality in the Thomas–Fermi–von Weizsäcker model of atoms and molecules. Commun. Math. Phys. 129, 561–598 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Solovej, J.P.: Proof of the ionization conjecture in a reduced Hartree–Fock model. Invent. Math. 104, 291–311 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Solovej, J.P.: The ionization conjecture in Hartree–Fock theory. Ann. Math. 158(2), 509–576 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frank, R.L., Nam, P.T., Van Den Bosch, H.: The ionization conjecture in Thomas–Fermi–Dirac–von Weizsäcker theory. Commun. Pure Appl. Math. 71(3), 577–614 (2018)

    Article  MATH  Google Scholar 

  7. Müller, A.M.K.: Explicit approximate relation between reduced two- and one-particle density matrices. Phys. Lett. A 105, 446–452 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  8. Buijse, M.A., Baerends, E.J.: An approximate exchange-correlation hole density as a functional of the natural orbitals. Mol. Phys. 100, 401–421 (2002)

    Article  ADS  Google Scholar 

  9. Frank, R.L., Lieb, E.H., Seiringer, R., Siedentop, H.: Müller’s exchange–correlation energy in density-matrix-functional theory. Phys. Rev. A 76, 052517 (2007)

    Article  ADS  Google Scholar 

  10. Lieb, E.H.: Thomas–Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53, 603–641 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Lieb, E.H.: Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29, 3018–3028 (1984)

    Article  ADS  Google Scholar 

  12. Lenzmann, E., Lewin, M.: Dynamical ionization bounds for atoms. Anal. PDE 6, 1183–1211 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nam, P.T.: New bounds on the maximum ionization of atoms. Commun. Math. Phys. 312, 427–445 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Nam, P.T., Van Den Bosch, H.: Nonexistence in Thomas–Fermi–Dirac–von Weizsäcker theory with small nuclear charges. Math. Phys. Anal. Geom. 20, 6 (2017)

    Article  Google Scholar 

  15. Frank, R.L., Killip, R., Nam, P.T.: Nonexistence of large nuclei in the liquid drop model. Lett. Math. Phys. 106, 1033–1036 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Kehle, C.: The maximal excess charge for a family of density-matrix-functional theories including Hartree–Fock and Müller theories. J. Math. Phys. 58, 011901 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Siedentop, H.: The asymptotic behaviour of the ground state energy of the Müller functional for heavy atoms (German). J. Phys. A Math. Theor. 42, 085201 (2009)

    Article  ADS  MATH  Google Scholar 

  18. Lieb, E.H., Thirring, W.E.: Bound for the kinetic energy of fermions which proves the stability of matter. Phys. Rev. Lett. 35, 687 (1975)

    Article  ADS  Google Scholar 

  19. Simon, B.: Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima: asymptotic expansions. Ann. Inst. Henri Poincaré Sect. A 38, 295–380 (1983)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Heinz Siedentop for a motivating discussion. Partial support by U.S. National Science Foundation DMS-1363432 (R.L.F.), Austrian Science Fund (FWF) Project Nr. P 27533-N27 (P.T.N.), CONICYT (Chile) through CONICYT–PCHA/Doctorado Nacional/2014, Fondecyt Project # 116–0856 and Iniciativa Científica Milenio (Chile) through Millennium Nucleus RC–120002 “Física Matemática” (H.V.D.B.) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert L. Frank.

Additional information

Communicated by Jan Derezinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frank, R.L., Nam, P.T. & Van Den Bosch, H. The Maximal Excess Charge in Müller Density-Matrix-Functional Theory. Ann. Henri Poincaré 19, 2839–2867 (2018). https://doi.org/10.1007/s00023-018-0695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0695-1

Navigation