Skip to main content

Advertisement

SpringerLink
  • Annales Henri Poincaré
  • Journal Aims and Scope
  • Submit to this journal
Algebraic Quantum Field Theory on Spacetimes with Timelike Boundary
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Covariant phase space with boundaries

22 October 2020

Daniel Harlow & Jie-qiang Wu

A Rényi quantum null energy condition: proof for free field theories

13 January 2021

Mudassir Moosa, Pratik Rath & Vincent Paul Su

Lorentzian 2D CFT from the pAQFT Perspective

18 March 2022

Sam Crawford, Kasia Rejzner & Benoît Vicedo

L-extensions and L-boundary of conformal spacetimes

13 November 2018

A. Bautista, A. Ibort & J. Lafuente

QFT and Topology in Two Dimensions: $$\mathrm{SL}(2, {{\mathbb {R}}})$$ SL ( 2 , R ) -Symmetry and the de Sitter Universe

27 April 2021

Henri Epstein & Ugo Moschella

Perturbative Algebraic Quantum Field Theory on Quantum Spacetime: Adiabatic and Ultraviolet Convergence

23 June 2020

Sergio Doplicher, Gerardo Morsella & Nicola Pinamonti

General Relativity and the AKSZ Construction

02 July 2021

G. Canepa, A. S. Cattaneo & M. Schiavina

BV equivalence with boundary

21 February 2023

F. M. Castela Simão, A. S. Cattaneo & M. Schiavina

Local incompatibility of the microlocal spectrum condition with the KMS property along spacelike directions in quantum field theory on curved spacetime

22 February 2019

Nicola Pinamonti, Ko Sanders & Rainer Verch

Download PDF
  • Open Access
  • Published: 30 May 2018

Algebraic Quantum Field Theory on Spacetimes with Timelike Boundary

  • Marco Benini  ORCID: orcid.org/0000-0003-0192-12261,
  • Claudio Dappiaggi  ORCID: orcid.org/0000-0002-3315-12732,3 &
  • Alexander Schenkel  ORCID: orcid.org/0000-0001-6790-17844 

Annales Henri Poincaré volume 19, pages 2401–2433 (2018)Cite this article

  • 393 Accesses

  • 20 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We analyze quantum field theories on spacetimes M with timelike boundary from a model-independent perspective. We construct an adjunction which describes a universal extension to the whole spacetime M of theories defined only on the interior \(\mathrm {int}M\). The unit of this adjunction is a natural isomorphism, which implies that our universal extension satisfies Kay’s F-locality property. Our main result is the following characterization theorem: Every quantum field theory on M that is additive from the interior (i.e., generated by observables localized in the interior) admits a presentation by a quantum field theory on the interior \(\mathrm {int}M\) and an ideal of its universal extension that is trivial on the interior. We shall illustrate our constructions by applying them to the free Klein–Gordon field.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. European Mathematical Society, Zürich (2007)

    Book  MATH  Google Scholar 

  2. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian geometry. Marcel Dekker, New York (1996)

    MATH  Google Scholar 

  3. Benini, M., Dappiaggi, C.: Models of free quantum field theories on curved backgrounds. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in Algebraic Quantum Field Theory, pp. 75–124. Springer, Heidelberg (2015). arXiv:1505.04298 [math-ph]

  4. Benini, M., Dappiaggi, C., Hack, T.-P.: Quantum field theory on curved backgrounds—a primer. Int. J. Mod. Phys. A 28, 1330023 (2013). arXiv:1306.0527 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Benini, M., Schenkel, A., Woike, L.: Operads for algebraic quantum field theory. arXiv:1709.08657 [math-ph]

  6. Benini, M., Schenkel, A., Woike, L.: Involutive categories, colored \(\ast \)-operads and quantum field theory. arXiv:1802.09555 [math.CT]

  7. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: A new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003). arxiv:math-ph/0112041

  8. Bussola, F., Dappiaggi, C., Ferreira, H.R.C., Khavkine, I.: Ground state for a massive scalar field in the BTZ spacetime with Robin boundary conditions. Phys. Rev. D 96(10), 105016 (2017). arXiv:1708.00271 [gr-qc]

    Article  ADS  Google Scholar 

  9. Chruściel, P.T., Galloway, G.J., Solis, D.: Topological censorship for Kaluza–Klein space-times. Ann. Henri Poincaré 10, 893 (2009). arXiv:0808.3233 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Dappiaggi, C., Ferreira, H.R.C.: Hadamard states for a scalar field in anti-de Sitter spacetime with arbitrary boundary conditions. Phys. Rev. D 94(12), 125016 (2016). arXiv:1610.01049 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  11. Dappiaggi, C., Ferreira, H.R.C.: On the algebraic quantization of a massive scalar field in anti-de-Sitter spacetime. Rev. Math. Phys. 30, 1850004 (2018). arXiv:1701.07215 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  12. Dappiaggi, C., Nosari, G., Pinamonti, N.: The Casimir effect from the point of view of algebraic quantum field theory. Math. Phys. Anal. Geom. 19, 12 (2016). arXiv:1412.1409 [math-ph]

    Article  MathSciNet  Google Scholar 

  13. Dütsch, M., Rehren, K.-H.: Generalized free fields and the AdS-CFT correspondence. Ann. Henri Poincaré 4, 613 (2003). arXiv:math-ph/0209035

  14. Fewster, C.J.: Endomorphisms and automorphisms of locally covariant quantum field theories. Rev. Math. Phys. 25, 1350008 (2013). arXiv:1201.3295 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  15. Fredenhagen, K.: Generalizations of the theory of superselection sectors. In: Kastler, D. (ed.) The Algebraic theory of Superselection Sectors: Introduction and Recent Results, p. 379. World Scientific Publishing, Singapore (1990)

    Google Scholar 

  16. Fredenhagen, K.: Global observables in local quantum physics. In: Araki, H., Ito, K.R., Kishimoto, A., Ojima, I. (eds.) Quantum and Non-commutative Analysis: Past, Present and Future Perspectives, pp. 41–51. Kluwer Academic Publishers, Dordrecht (1993)

    Chapter  Google Scholar 

  17. Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras II: geometric aspects and conformal covariance. Rev. Math. Phys. 4, 113 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Ishibashi, A., Wald, R.M.: Dynamics in non-globally-hyperbolic static space-times II: general analysis of prescriptions for dynamics. Class. Quantum Gravity. 20, 3815 (2003). arXiv:gr-qc/0305012

  20. Ishibashi, A., Wald, R.M.: Dynamics in non-globally-hyperbolic static space-times III: anti-de Sitter space-time. Class. Quantum Gravity 21, 2981 (2004). arXiv:hep-th/0402184

  21. Kashiwara, M., Schapira, P.: Categories and Sheaves. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  22. Kay, B.S.: The principle of locality and quantum field theory on (non globally hyperbolic) curved spacetimes. Rev. Math. Phys. 4, 167 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York (2013)

    MATH  Google Scholar 

  24. O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York (1983)

    MATH  Google Scholar 

  25. Rehren, K.-H.: Algebraic holography. Ann. Henri Poincaré 1, 607 (2000). arXiv:hep-th/9905179

  26. Rejzner, K.: Perturbative Algebraic Quantum Field Theory: An Introduction for Mathematicians. Springer, Heidelberg (2016)

    Book  MATH  Google Scholar 

  27. Ribeiro, P.L.: Structural and Dynamical Aspects of the AdS/CFT Correspondence: A Rigorous Approach. Ph.D. Thesis, University of Sao Paulo (2007). arXiv:0712.0401 [math-ph]

  28. Riehl, E.: Category Theory in Context. Dover Publications Inc, New York (2016)

    MATH  Google Scholar 

  29. Solis, D.A.: Global Properties of Asymptotically de Sitter and Anti de Sitter Spacetimes. Ph.D. Thesis, University of Miami (2006). https://scholarlyrepository.miami.edu/dissertations/2414/

  30. Sommer, C.: Algebraische Charakterisierung von Randbedingungen in der Quantenfeldtheorie. Diploma Thesis in German, University of Hamburg (2006). http://www.desy.de/uni-th/lqp/psfiles/dipl-sommer.ps.gz

  31. Wald, R.M.: Dynamics in nonglobally hyperbolic, static space-times. J. Math. Phys. 21, 2802 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  32. Wrochna, M.: The holographic Hadamard condition on asymptotically anti-de Sitter spacetimes. Lett. Math. Phys. 107, 2291 (2017). arXiv:1612.01203 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Zahn, J.: Generalized Wentzell boundary conditions and quantum field theory. Ann. Henri Poincaré 19, 163 (2018). arXiv:1512.05512 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Fachbereich Mathematik, Universität Hamburg, Bundesstr. 55, 20146, Hamburg, Germany

    Marco Benini

  2. INFN, Sezione di Pavia, Università di Pavia, Via Bassi 6, 27100, Pavia, Italy

    Claudio Dappiaggi

  3. Dipartimento di Fisica, INFN, Sezione di Pavia, Via Bassi 6, 27100, Pavia, Italy

    Claudio Dappiaggi

  4. School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

    Alexander Schenkel

Authors
  1. Marco Benini
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Claudio Dappiaggi
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Alexander Schenkel
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alexander Schenkel.

Additional information

Communicated by Karl Henning Rehren.

Dedicated to Klaus Fredenhagen on the occasion of his 70th birthday.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benini, M., Dappiaggi, C. & Schenkel, A. Algebraic Quantum Field Theory on Spacetimes with Timelike Boundary. Ann. Henri Poincaré 19, 2401–2433 (2018). https://doi.org/10.1007/s00023-018-0687-1

Download citation

  • Received: 03 January 2018

  • Accepted: 03 May 2018

  • Published: 30 May 2018

  • Issue Date: August 2018

  • DOI: https://doi.org/10.1007/s00023-018-0687-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.