Abstract
We analyze quantum field theories on spacetimes M with timelike boundary from a model-independent perspective. We construct an adjunction which describes a universal extension to the whole spacetime M of theories defined only on the interior \(\mathrm {int}M\). The unit of this adjunction is a natural isomorphism, which implies that our universal extension satisfies Kay’s F-locality property. Our main result is the following characterization theorem: Every quantum field theory on M that is additive from the interior (i.e., generated by observables localized in the interior) admits a presentation by a quantum field theory on the interior \(\mathrm {int}M\) and an ideal of its universal extension that is trivial on the interior. We shall illustrate our constructions by applying them to the free Klein–Gordon field.
References
Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. European Mathematical Society, Zürich (2007)
Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian geometry. Marcel Dekker, New York (1996)
Benini, M., Dappiaggi, C.: Models of free quantum field theories on curved backgrounds. In: Brunetti, R., Dappiaggi, C., Fredenhagen, K., Yngvason, J. (eds.) Advances in Algebraic Quantum Field Theory, pp. 75–124. Springer, Heidelberg (2015). arXiv:1505.04298 [math-ph]
Benini, M., Dappiaggi, C., Hack, T.-P.: Quantum field theory on curved backgrounds—a primer. Int. J. Mod. Phys. A 28, 1330023 (2013). arXiv:1306.0527 [gr-qc]
Benini, M., Schenkel, A., Woike, L.: Operads for algebraic quantum field theory. arXiv:1709.08657 [math-ph]
Benini, M., Schenkel, A., Woike, L.: Involutive categories, colored \(\ast \)-operads and quantum field theory. arXiv:1802.09555 [math.CT]
Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: A new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003). arxiv:math-ph/0112041
Bussola, F., Dappiaggi, C., Ferreira, H.R.C., Khavkine, I.: Ground state for a massive scalar field in the BTZ spacetime with Robin boundary conditions. Phys. Rev. D 96(10), 105016 (2017). arXiv:1708.00271 [gr-qc]
Chruściel, P.T., Galloway, G.J., Solis, D.: Topological censorship for Kaluza–Klein space-times. Ann. Henri Poincaré 10, 893 (2009). arXiv:0808.3233 [gr-qc]
Dappiaggi, C., Ferreira, H.R.C.: Hadamard states for a scalar field in anti-de Sitter spacetime with arbitrary boundary conditions. Phys. Rev. D 94(12), 125016 (2016). arXiv:1610.01049 [gr-qc]
Dappiaggi, C., Ferreira, H.R.C.: On the algebraic quantization of a massive scalar field in anti-de-Sitter spacetime. Rev. Math. Phys. 30, 1850004 (2018). arXiv:1701.07215 [math-ph]
Dappiaggi, C., Nosari, G., Pinamonti, N.: The Casimir effect from the point of view of algebraic quantum field theory. Math. Phys. Anal. Geom. 19, 12 (2016). arXiv:1412.1409 [math-ph]
Dütsch, M., Rehren, K.-H.: Generalized free fields and the AdS-CFT correspondence. Ann. Henri Poincaré 4, 613 (2003). arXiv:math-ph/0209035
Fewster, C.J.: Endomorphisms and automorphisms of locally covariant quantum field theories. Rev. Math. Phys. 25, 1350008 (2013). arXiv:1201.3295 [math-ph]
Fredenhagen, K.: Generalizations of the theory of superselection sectors. In: Kastler, D. (ed.) The Algebraic theory of Superselection Sectors: Introduction and Recent Results, p. 379. World Scientific Publishing, Singapore (1990)
Fredenhagen, K.: Global observables in local quantum physics. In: Araki, H., Ito, K.R., Kishimoto, A., Ojima, I. (eds.) Quantum and Non-commutative Analysis: Past, Present and Future Perspectives, pp. 41–51. Kluwer Academic Publishers, Dordrecht (1993)
Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection sectors with braid group statistics and exchange algebras II: geometric aspects and conformal covariance. Rev. Math. Phys. 4, 113 (1992)
Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)
Ishibashi, A., Wald, R.M.: Dynamics in non-globally-hyperbolic static space-times II: general analysis of prescriptions for dynamics. Class. Quantum Gravity. 20, 3815 (2003). arXiv:gr-qc/0305012
Ishibashi, A., Wald, R.M.: Dynamics in non-globally-hyperbolic static space-times III: anti-de Sitter space-time. Class. Quantum Gravity 21, 2981 (2004). arXiv:hep-th/0402184
Kashiwara, M., Schapira, P.: Categories and Sheaves. Springer, Berlin (2006)
Kay, B.S.: The principle of locality and quantum field theory on (non globally hyperbolic) curved spacetimes. Rev. Math. Phys. 4, 167 (1992)
Lee, J.M.: Introduction to Smooth Manifolds. Springer, New York (2013)
O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York (1983)
Rehren, K.-H.: Algebraic holography. Ann. Henri Poincaré 1, 607 (2000). arXiv:hep-th/9905179
Rejzner, K.: Perturbative Algebraic Quantum Field Theory: An Introduction for Mathematicians. Springer, Heidelberg (2016)
Ribeiro, P.L.: Structural and Dynamical Aspects of the AdS/CFT Correspondence: A Rigorous Approach. Ph.D. Thesis, University of Sao Paulo (2007). arXiv:0712.0401 [math-ph]
Riehl, E.: Category Theory in Context. Dover Publications Inc, New York (2016)
Solis, D.A.: Global Properties of Asymptotically de Sitter and Anti de Sitter Spacetimes. Ph.D. Thesis, University of Miami (2006). https://scholarlyrepository.miami.edu/dissertations/2414/
Sommer, C.: Algebraische Charakterisierung von Randbedingungen in der Quantenfeldtheorie. Diploma Thesis in German, University of Hamburg (2006). http://www.desy.de/uni-th/lqp/psfiles/dipl-sommer.ps.gz
Wald, R.M.: Dynamics in nonglobally hyperbolic, static space-times. J. Math. Phys. 21, 2802 (1980)
Wrochna, M.: The holographic Hadamard condition on asymptotically anti-de Sitter spacetimes. Lett. Math. Phys. 107, 2291 (2017). arXiv:1612.01203 [math-ph]
Zahn, J.: Generalized Wentzell boundary conditions and quantum field theory. Ann. Henri Poincaré 19, 163 (2018). arXiv:1512.05512 [math-ph]
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Karl Henning Rehren.
Dedicated to Klaus Fredenhagen on the occasion of his 70th birthday.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Benini, M., Dappiaggi, C. & Schenkel, A. Algebraic Quantum Field Theory on Spacetimes with Timelike Boundary. Ann. Henri Poincaré 19, 2401–2433 (2018). https://doi.org/10.1007/s00023-018-0687-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-018-0687-1