Annales Henri Poincaré

, Volume 19, Issue 5, pp 1489–1505 | Cite as

A Scattering Approach to a Surface with Hyperbolic Cusp

  • Nikolaos Roidos


Let X be a two-dimensional smooth manifold with boundary \(S^{1}\) and \(Y=[1,\infty )\times S^{1}\). We consider a family of complete surfaces arising by endowing \(X\cup _{S^{1}}Y\) with a parameter-dependent Riemannian metric, such that the restriction of the metric to Y converges to the hyperbolic metric as a limit with respect to the parameter. We describe the associated spectral and scattering theory of the Laplacian for such a surface. We further show that on Y the zero \(S^{1}\)-Fourier coefficient of the generalized eigenfunction of this Laplacian, as a family with respect to the parameter, approximates in a certain sense, for large values of the spectral parameter, the zero \(S^{1}\)-Fourier coefficient of the generalized eigenfunction of the Laplacian for the case of a surface with hyperbolic cusp.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hunsicker, E., Strohmaier, A., Roidos, N.: Spectral theory of the \(p\)-form Laplacian on manifolds with generalized cusps. J. Spectr. Theory 4(1), 177–209 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Iwaniec, H.: Spectral Methods of Automorphic Forms. Graduate Studies in Mathematics, vol. 53. Am. Math. Soc, Providence (2002)zbMATHGoogle Scholar
  3. 3.
    Lax, P., Phillips, R.S.: Scattering Theory for Automorphic Functions. Annals of Mathematics Studies, vol. 87. Princeton Univ. Press, Princeton (1976)zbMATHGoogle Scholar
  4. 4.
    Müller, W.: On the analytic continuation of rank one Eisenstein series. Geom. Funct. Anal. 6(3), 572–586 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Müller, W.: Spectral geometry and scattering theory for certain complete surfaces of finite volume. Invent. Math. 109(2), 265–306 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Müller, W.: Spectral theory for Riemannian manifolds with cusps and a related trace formula. Math. Nachr. 111, 197–288 (1983)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Olver, F.: The asymptotic expansion of Bessel functions of large order. Philos. Trans. R. Soc. London. Ser. A. 247, 328–368 (1954)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. IV. Academic Press, San Diego (1980)zbMATHGoogle Scholar
  9. 9.
    Roidos, N., Schrohe, E.: Existence and maximal \(L^{p}\)-regularity of solutions for the porous medium equation on manifolds with conical singularities. Comm. Partial Differ. Equ. 41(9), 1441–1471 (2016)CrossRefzbMATHGoogle Scholar
  10. 10.
    Strohmaier, A.: Analytic continuation of resolvent kernels on noncompact symmetric spaces. Math. Z. 250, 411–425 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Titchmarsh, E.: Weber’s integral theorem. Proc. Lond. Math. Soc. 22(2), 15–28 (1924)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Watson, G.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1958)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für AnalysisLeibniz Universität HannoverHannoverGermany

Personalised recommendations