Advertisement

Annales Henri Poincaré

, Volume 19, Issue 5, pp 1507–1527 | Cite as

Persistence of Translational Symmetry in the BCS Model with Radial Pair Interaction

  • Andreas Deuchert
  • Alissa Geisinger
  • Christian Hainzl
  • Michael Loss
Open Access
Article
  • 85 Downloads

Abstract

We consider the two-dimensional BCS functional with a radial pair interaction. We show that the translational symmetry is not broken in a certain temperature interval below the critical temperature. In the case of vanishing angular momentum, our results carry over to the three-dimensional case.

Notes

Acknowledgements

Open access funding provided by Institute of Science and Technology (IST Austria). The paper was partially supported by the GRK 1838 and the Humboldt foundation. M.L. was partially supported by NSF grant DMS-1600560. Partial financial support by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 694227) is gratefully acknowledged (A.D.). We are grateful for the hospitality at the Department of Mathematics at the University of Tübingen (M.L.) and at the Georgia Tech School of Mathematics (A.G.).

References

  1. 1.
    Bach, V., Lieb, E.H., Solovej, J.P.: Generalized Hartree-Fock theory and the Hubbard model. J. Stat. Phys. 76, 3–89 (1994)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Billard, P., Fano, G.: An existence proof for the gap equation in the superconductivity theory. Commun. Math. Phys. 10(4), 274–279 (1968)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    Bräunlich, G., Hainzl, C., Seiringer, R.: Translation-invariant quasi-free states for fermionic systems and the BCS approximation. Rev. Math. Phys 26(7), 1450012 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bräunlich, G., Hainzl, C., Seiringer, R.: Bogolubov–Hartree–Fock theory for strongly interacting fermions in the low density limit. Math. Phys. Anal. Geom. 19(2), 13 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Deuchert, A.: A lower bound for the BCS functional with boundary conditions at infinity. J. Math. Phys. 58, 081901 (2017)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Frank, R.L., Hainzl, C., Naboko, S., Seiringer, R.: The critical temperature for the BCS equation at weak coupling. J. Geom. Anal. 17(4), 559–567 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Frank, R.L., Hainzl, C., Seiringer, R., Solovej, J.P.: Microscopic derivation of Ginzburg–Landau theory. J. Am. Math. Soc. 25(3), 667–713 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Frank, R.L., Hainzl, C., Schlein, B., Seiringer, R.: Incompatibility of Time-Dependent Bogoliubov-de-Gennes and Ginzburg-Landau Equations. Lett. Math. Phys. 106(7), 913–923 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Frank, R.L., Hainzl, C., Seiringer, R., Solovej, J.P.: The external field dependence of the BCS critical temperature. Commun. Math. Phys. 342(1), 189–216 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Frank, R.L., Lemm, M.: Multi-component Ginzburg–Landau theory: microscopic derivation and examples. Ann. Henri Poincaré 17(9), 2285–2340 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Freiji, A., Hainzl, C., Seiringer, R.: The gap equation for spin-polarized fermions. J. Math. Phys. 53(1), 012101 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hainzl, C., Hamza, E., Seiringer, R., Solovej, J.P.: The BCS functional for general pair interactions. Commun. Math. Phys. 281(2), 349–367 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hainzl, C., Lewin, M., Seiringer, R.: A nonlinear model for relativistic electrons at positive temperature. Rev. Math. Phys. 20(10), 1283–1307 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hainzl, C., Seiringer, R.: The BCS critical temperature for potentials with negative scattering length. Lett. Math. Phys. 84(2–3), 99–107 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hainzl, C., Seiringer, R.: Critical temperature and energy gap for the BCS equation. Phys. Rev. B 77, 184517 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    Hainzl, C., and Seiringer, R.: Spectral properties of the BCS gap equation of superfluidity. In: Mathematical Results in Quantum Mechanics. World Sci. Publ., Hackensack, pp. 117–136 (2008)Google Scholar
  17. 17.
    Hainzl, C., Seiringer, R.: Low density limit of BCS theory and Bose–Einstein condensation of fermion pairs. Lett. Math. Phys. 100(2), 119–138 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hainzl, C., Schlein, B.: Dynamics of Bose–Einstein condensates of fermion pairs in the low density limit of BCS theory. J. Funct. Anal. 265(3), 399–423 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Hainzl, C., Seiringer, R.: The Bardeen–Cooper–Schrieffer functional of superconductivity and its mathematical properties. J. Math. Phys. 57(2), 021101 (2016)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hainzl, C., Seyrich, J.: Comparing the full time-dependent Bogoliubov-de-Gennes equations to their linear approximation: a numerical investigation. Eur. Phys. J. B 89(5), 133 (2016)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    McLeod, B.J., Yang, Y.: The uniqueness and approximation of a positive solution of the bardeen-cooper-schrieffer gap equation. J. Math. Phys. 41(9), 6007–6025 (2000)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Odeh, F.M.: An existence theorem for the BCS integral equation. IBM J. Res. Dev. 8, 187–188 (1964)CrossRefGoogle Scholar
  23. 23.
    Vansevenant, A.: The gap equation in superconductivity theory. Phys. D Nonlinear Phenom. 17(3), 339–344 (1985)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Yang, Y.: On the bardeen-cooper-schrieffer integral equation in the theory of superconductivity. Lett. Math. Phys. 22(1), 27–37 (1991)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Yang, Y.: Mathematical analysis of the multiband bcs gap equations in superconductivity. Phys. D: Nonlinear Phenom. 200(1–2), 60–74 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Andreas Deuchert
    • 1
  • Alissa Geisinger
    • 2
  • Christian Hainzl
    • 2
  • Michael Loss
    • 3
  1. 1.Institute of Science and Technology Austria (IST Austria)KlosterneuburgAustria
  2. 2.Mathematisches InstitutUniversität TübingenTübingenGermany
  3. 3.School of MathematicsGeorgia TechAtlantaUSA

Personalised recommendations