Annales Henri Poincaré

, Volume 19, Issue 5, pp 1349–1384 | Cite as

Completeness of the Bethe Ansatz for an Open \(\varvec{q}\)-Boson System with Integrable Boundary Interactions

  • Jan Felipe van Diejen
  • Erdal Emsiz
  • Ignacio Nahuel Zurrián


We employ a discrete integral-reflection representation of the double affine Hecke algebra of type \(C^\vee C\) at the critical level \(\text {q}=1\), to endow the open finite q-boson system with integrable boundary interactions at the lattice ends. It is shown that the Bethe Ansatz entails a complete basis of eigenfunctions for the commuting quantum integrals in terms of Macdonald’s three-parameter hyperoctahedral Hall–Littlewood polynomials.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bogoliubov, N.M.: Boxed plane partitions as an exactly solvable boson model. J. Phys. A 38, 9415–9430 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bogoliubov, N.M., Bullough, R.K.: A q-deformed completely integrable Bose gas model. J. Phys. A 25, 4057–4071 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bogoliubov, N.M., Izergin, A.G., Kitanine, A.N.: Correlation functions for a strongly correlated boson system. Nuclear Phys. B 516, 501–528 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for the \(q\)-Boson particle system. Compos. Math. 151, 1–67 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Borodin, A., Corwin, I., Petrov, L., Sasamoto, T.: Spectral theory for interacting particle systems solvable by coordinate Bethe ansatz. Commun. Math. Phys. 339, 1167–1245 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Carey, A.L., Langmann, E.: Loop groups, anyons and the Calogero–Sutherland model. Commun. Math. Phys. 201, 1–34 (1999)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cherednik, I.: Double Affine Hecke Algebras. London Mathematical Society Lecture Note Series 319, Cambridge University Press, Cambridge (2005)Google Scholar
  8. 8.
    Davies, B., Gutkin, E.: Intertwining operators and the quantum inverse method for the nonlinear Schrödinger equation. Phys. A 151, 167–192 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dorlas, T.C.: Orthogonality and completeness of the Bethe ansatz eigenstates of the nonlinear Schrödinger model. Commun. Math. Phys. 154, 347–376 (1993)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    Duval, A., Pasquier, V.: \(q\)-bosons, Toda lattice, Pieri rules and Baxter \(q\)-operator. J. Phys. A 49, 1540006 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Emsiz, E., Opdam, E.M., Stokman, J.V.: Periodic integrable systems with delta-potentials. Commun. Math. Phys. 264, 191–225 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Emsiz, E., Opdam, E.M., Stokman, J.V.: Trigonometric Cherednik algebra at critical level and quantum many-body problems. Selecta Math. (N.S.) 14, 571–605 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gaudin, M.: Boundary energy of a Bose gas in one dimension. Phys. Rev. A 4, 386–394 (1971)ADSCrossRefGoogle Scholar
  14. 14.
    Gaudin, M.: The Bethe Wavefunction. Cambridge University Press, Cambridge (2014)CrossRefzbMATHGoogle Scholar
  15. 15.
    Gehles, K.E.: Properties of Cherednik Algebras and Graded Hecke Algebras. Ph.D. Thesis, University of Glasgow (2006)Google Scholar
  16. 16.
    Groenevelt, W.: Multivariable Wilson polynomials and degenerate Hecke algebras. Selecta Math. (N.S.) 15, 377–418 (2009)Google Scholar
  17. 17.
    Gutkin, E.: Integrable systems with delta-potential. Duke Math. J. 49, 1–21 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gutkin, E., Sutherland, B.: Completely integrable systems and groups generated by reflections. Proc. Natl. Acad. Sci. USA 76, 6057–6059 (1979)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Heckman, G.J., Opdam, E.M.: Yang’s system of particles and Hecke algebras. Ann. Math. 2(145), 139–173 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Humphreys, J.E.: Reflection Groups and Coxeter Groups. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  21. 21.
    Kaup, D.J.: Exact quantization of the nonlinear Schrödinger equation. J. Math. Phys. 16, 2036–2041 (1975)ADSCrossRefGoogle Scholar
  22. 22.
    Klimyk, A., Schmüdgen, K.: Quantum Groups and their Representations. Springer, Berlin (1997)CrossRefzbMATHGoogle Scholar
  23. 23.
    Korepin, V.E., Bogoliubov, N.M., Izergin, A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar
  24. 24.
    Korff, C.: Cylindric versions of specialised Macdonald functions and a deformed Verlinde algebra. Commun. Math. Phys. 318, 173–246 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Korff, C., Stroppel, C.: The \(\widehat{\mathfrak{sl}}(n)_k\)-WZNW fusion ring: a combinatorial construction and a realisation as quotient of quantum cohomology. Adv. Math. 225, 200–268 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Langmann, E.: Second quantization of the elliptic Calogero-Sutherland model. Commun. Math. Phys. 247, 321–351 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Li, B., Wang, Y.-S.: Exact solving \(q\) deformed boson model under open boundary condition. Mod. Phys. Lett. B 26, 1150008 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 2(130), 1605–1616 (1963)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc. 2, 599–635 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Macdonald, I.G.: Orthogonal polynomials associated with root systems. Sém. Lothar. Combin. 45, Art. B45a (2000/01)Google Scholar
  31. 31.
    Macdonald, I.G.: Spherical functions on a \({\mathfrak{p}}\)-adic Chevalley group. Bull. Am. Math. Soc. 74, 520–525 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Macdonald, I.G.: The Poincaré series of a Coxeter group. Math. Ann. 199, 161–174 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Macdonald, I.G.: Affine Hecke Algebras and Orthogonal Polynomials. Cambridge University Press, Cambridge (2003)CrossRefzbMATHGoogle Scholar
  34. 34.
    Majid, S.: Foundations of Quantum Group Theory. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  35. 35.
    Mattis, D.C.: The Many-Body Problem: An Encyclopedia of Exactly Solved Models in One Dimension. World Scientific, Singapore (1994)zbMATHGoogle Scholar
  36. 36.
    Nelsen, K., Ram, A.: Kostka–Foulkes polynomials and Macdonald spherical functions. In: Surveys in Combinatorics, C. D. Wensley (ed.), London Math. Soc. Lecture Note Ser. 307, Cambridge University Press, Cambridge, 2003, pp. 325–370Google Scholar
  37. 37.
    Noumi, M.: Macdonald-Koornwinder polynomials and affine Hecke rings. RIMS Kôkyûroku 919, 44–55 (1995). (in Japanese) MathSciNetzbMATHGoogle Scholar
  38. 38.
    Oblomkov, A.: Double affine Hecke algebras and Calogero-Moser spaces. Represent. Theory 8, 243–266 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    O’Connell, N., Pei, Y.: A \(q\)-weighted version of the Robinson–Schensted algorithm. Electron. J. Probab. 18(95), 1–25 (2013)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Parkinson, J.: Buildings and Hecke algebras. J. Algebra 297, 1–49 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Povolotsky, A.M.: On integrability of zero-range chipping models with factorized steady states. J. Phys. A: Math. Theor. 46, Paper 465205 (2013)Google Scholar
  42. 42.
    Ruijsenaars, S.N.M.: Factorized weight functions vs. factorized scattering. Commun. Math. Phys. 228, 467–494 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Sahi, S.: Nonsymmetric Koornwinder polynomials and duality. Ann. Math. 2(150), 267–282 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Sasamoto, T., Wadati, M.: Exact results for one-dimensional totally asymmetric diffusion models. J. Phys. A 31, 6057–6071 (1998)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Sklyanin, E.K.: Boundary conditions for integrable quantum systems. J. Phys. A 21, 2375–2389 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Stokman, J.V.: Difference Fourier transforms for nonreduced root systems. Selecta Math. (N.S.) 9, 409–494 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Takeyama, Y.: A deformation of affine Hecke algebra and integrable stochastic particle system. J. Phys. A: Math. Theor. 47, Paper 465203 (2014)Google Scholar
  48. 48.
    Thacker, H.B.: Exact integrability in quantum field theory and statistical systems. Rev. Mod. Phys. 53, 253–285 (1981)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    Tsilevich, N.V.: The quantum inverse scattering method for the \(q\)-boson model and symmetric functions. Funct. Anal. Appl. 40, 207–217 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    van Diejen, J.F., Emsiz, E.: Diagonalization of the infinite \(q\)-boson system. J. Funct. Anal. 266, 5801–5817 (2014)Google Scholar
  51. 51.
    van Diejen, J.F., Emsiz, E.: Discrete harmonic analysis on a Weyl alcove. J. Funct. Anal. 265, 1981–2038 (2013)Google Scholar
  52. 52.
    van Diejen, J.F., Emsiz, E.: Orthogonality of Bethe Ansatz eigenfunctions for the Laplacian on a hyperoctahedral Weyl alcove. Commun. Math. Phys. 350, 1017–1067 (2017)Google Scholar
  53. 53.
    van Diejen, J.F., Emsiz, E.: Orthogonality of Macdonald polynomials with unitary parameters. Math. Z. 276, 517–542 (2014)Google Scholar
  54. 54.
    van Diejen, J.F., Emsiz, E.: The semi-infinite \(q\)-boson system with boundary interaction. Lett. Math. Phys. 104, 103–113 (2014)Google Scholar
  55. 55.
    van Diejen, J.F.: Diagonalization of an integrable discretization of the repulsive delta Bose gas on the circle. Commun. Math. Phys. 267, 451–476 (2006)Google Scholar
  56. 56.
    van Diejen, J.F.: On the Plancherel formula for the (discrete) Laplacian in a Weyl chamber with repulsive boundary conditions at the walls. Ann. Henri Poincaré 5, 135–168 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Wheeler, M., Zinn-Justin, P.: Refined Cauchy/Littlewood identities and six-vertex model partition functions: III. Deformed bosons. Adv. Math. 299, 543–600 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Yang, C.N., Yang, C.P.: Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys. 10, 1115–1122 (1969)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jan Felipe van Diejen
    • 1
  • Erdal Emsiz
    • 2
  • Ignacio Nahuel Zurrián
    • 2
  1. 1.Instituto de Matemática y FísicaUniversidad de TalcaTalcaChile
  2. 2.Facultad de MatemáticasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations