Skip to main content
Log in

Bulk–Edge Correspondence for Two-Dimensional Floquet Topological Insulators

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

Floquet topological insulators describe independent electrons on a lattice driven out of equilibrium by a time-periodic Hamiltonian, beyond the usual adiabatic approximation. In dimension two, such systems are characterized by integer-valued topological indices associated with the unitary propagator, alternatively in the bulk or at the edge of a sample. In this paper, we give new definitions of the two indices, relying neither on translation invariance nor on averaging, and show that they are equal. In particular, weak disorder and defects are intrinsically taken into account. Finally, indices can be defined when two driven samples are placed next to one another either in space or in time and then shown to be equal. The edge index is interpreted as a quantized pumping occurring at the interface with an effective vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asbóth, J.K., Tarasinski, B., Delplace, P.: Chiral symmetry and bulk-boundary correspondence in periodically driven one-dimensional systems. Phys. Rev. B 90(12), 125143 (2014)

    Article  ADS  Google Scholar 

  2. Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120(1), 220–237 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carpentier, D., Delplace, P., Fruchart, M., Gawędzki, K.: Topological index for periodically driven time-reversal invariant 2D systems. Phys. Rev. Lett. 114(10), 106806 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Carpentier, D., Delplace, P., Fruchart, M., Gawędzki, K., Tauber, C.: Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals. Nucl. Phys. B 896, 779–834 (2015)

    Article  ADS  MATH  Google Scholar 

  5. Elgart, A., Graf, G.M., Schenker, J.H.: Equality of the bulk and edge Hall conductances in a mobility gap. Commun. Math. Phys. 259(1), 185–221 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Fruchart, M.: Complex classes of periodically driven topological lattice systems. Phys. Rev. B 93(11), 115429 (2016)

    Article  ADS  Google Scholar 

  7. Fulga, I.C., Maksymenko, M.: Scattering matrix invariants of Floquet topological insulators. Phys. Rev. B 93(7), 075405 (2016)

    Article  ADS  Google Scholar 

  8. Graf, G.M., Porta, M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324(3), 851–895 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hatsugai, Y.: Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71(22), 3697 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Inoue, J.I., Tanaka, A.: Photoinduced transition between conventional and topological insulators in two-dimensional electronic systems. Phys. Rev. Lett. 105(1), 017401 (2010)

    Article  ADS  Google Scholar 

  11. Kitagawa, T., Berg, E., Rudner, M., Demler, E.: Topological characterization of periodically driven quantum systems. Phys. Rev. B 82(23), 235114 (2010)

    Article  ADS  Google Scholar 

  12. Klinovaja, J., Stano, P., Loss, D.: Topological Floquet phases in driven coupled Rashba nanowires. Phys. Rev. Lett. 116(17), 176401 (2016)

    Article  ADS  Google Scholar 

  13. Lindner, N.H., Refael, G., Galitski, V.: Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7(6), 490–495 (2011)

    Article  Google Scholar 

  14. Nathan, F., Rudner, M.S., Lindner, N.H., Berg, E., Refael, G.: Quantized magnetization density in periodically driven systems. Phys. Rev. Lett. 119(18), 186801 (2016)

    Article  ADS  Google Scholar 

  15. Oka, T., Aoki, H.: Photovoltaic Hall effect in graphene. Phys. Rev. B 79(8), 081406 (2009)

    Article  ADS  Google Scholar 

  16. Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators. Mathematical Physics Studies. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  17. Prodan, E., Schulz-Baldes, H.: Non-commutative odd Chern numbers and topological phases of disordered chiral systems. J. Funct. Anal. 271(5), 1150–1176 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Reed, M., Simon, B.: Method of Modern Mathematical Physics, vol. II. Academic Press, Cambridge (1980)

    MATH  Google Scholar 

  19. Rudner, M.S., Lindner, N.H., Berg, E., Levin, M.: Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3(3), 031005 (2013)

    Google Scholar 

  20. Sadel, C., Schulz-Baldes, H.: Topological boundary invariants for Floquet systems and quantum walks. Math. Phys. Anal. Geom. 20(4), 22 (2017)

    Article  MathSciNet  Google Scholar 

  21. Titum, P., Berg, E., Rudner, M.S., Refael, G., Lindner, N.H.: Anomalous Floquet–Anderson insulator as a nonadiabatic quantized charge pump. Phys. Rev. X 6(2), 021013 (2016)

    Google Scholar 

  22. Thouless, D.J.: Quantization of particle transport. Phys. Rev. B 27(10), 6083 (1983)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Tauber.

Additional information

Communicated by Vieri Mastropietro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graf, G.M., Tauber, C. Bulk–Edge Correspondence for Two-Dimensional Floquet Topological Insulators. Ann. Henri Poincaré 19, 709–741 (2018). https://doi.org/10.1007/s00023-018-0657-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0657-7

Navigation