Abstract
We investigate spectral properties of a Hermitised random matrix product which, contrary to previous product ensembles, allows for eigenvalues on the full real line. We prove that the eigenvalues form a bi-orthogonal ensemble, which reduces asymptotically to the Hermite Muttalib–Borodin ensemble. Explicit expressions for the bi-orthogonal functions as well as the correlation kernel are provided. Scaling the latter near the origin gives a limiting kernel involving Meijer G-functions, and the functional form of the global density is calculated. As a part of this study, we introduce a new matrix transformation which maps the space of polynomial ensembles onto itself. This matrix transformation is closely related to the so-called hyperbolic Harish-Chandra–Itzykson–Zuber integral.
Similar content being viewed by others
References
Akemann, G., Checinski, T., Liu, D.-Z., Strahov, E.: Finite rank perturbations in products of coupled random matrices: from one correlated to two Wishart ensembles. Ann. Inst. H. Poincaré Probab. Stat. (to appear) arXiv:1704.05224
Akemann, G., Ipsen, J.R.: Recent exact and asymptotic results for products of independent random matrices. Acta Phys. Pol. B 46, 1747 (2015)
Akemann, G., Ipsen, J.R., Kieburg, M.: Products of rectangular random matrices: singular values and progressive scattering. Phys. Rev. E 88, 052118 (2013)
Akemann, G., Kieburg, M., Wei, L.: Singular value correlation functions for products of Wishart random matrices. J. Phys. A 46, 275205 (2013)
Akemann, G., Strahov, E.: Dropping the independence: singular values for products of two coupled random matrices. Commun. Math. Phys. 345, 101 (2016)
Alexeev, N., Götze, F., Tikhomirov, A.: Asymptotic distribution of singular values of powers of random matrices. Lith. Math. J. 50, 121 (2010)
Andréief, C.: Note sur une relation les intégrales définies des produits des fonctions. Mém. de la Soc. Sci. Bordeaux 2 (1883)
Bai, Z.D., Miao, B., Jin, B.: On limit theorem for the eigenvalues of product of two random matrices. J. Multivar. Anal. 98, 76 (2007)
Banica, T., Belinschi, S.T., Capitaine, M., Collins, B.: Free Bessel laws. Canad. J. Math. 63, 3 (2011)
Borodin, A.: Biorthogonal ensembles. Nucl. Phys. B 536, 704 (1998)
Burda, Z., Jarosz, A., Livan, G., Nowak, M.A., Swiech, A.: Eigenvalues and singular values of products of rectangular Gaussian random matrices. Phys. Rev. E 82, 061114 (2010)
Carlitz, L.: A note on certain biorthogonal polynomials. Pac. J. Math. 24, 425 (1968)
Claeys, T., Kuijlaars, A.B.J., Wang, D.: Correlation kernels for sums and products of random matrices. Random Matrices: Theory Appl. 4, 1550017 (2015)
Claeys, T., Romano, S.: Biorthogonal ensembles with two-particle interactions. Nonlinearity 27, 2419 (2014)
Collar, A.R.: On the reciprocation of certain matrices. Proc. R. Soc. Edinb. 59, 195 (1939)
de Bruijn, N.G.: On some multiple integrals involving determinants. J. Indian Math. Soc. 19, 133 (1955)
Desrosiers, P., Forrester, P.J.: Asymptotic correlations for Gaussian and Wishart matrices with external source. Int. Math. Res. Notices 2006, 27395 (2006)
Fields, J.L.: The asymptotic expansion of the Meijer G-function. Math. Comput. 26, 757–765 (1972)
Forrester, P.J.: Log-gases and Random Matrices. Princeton University Press, Princeton, NJ (2010)
Forrester, P.J.: Eigenvalue statistics for product complex Wishart matrices. J. Phys. A 47, 345202 (2014)
Forrester, P.J., Ipsen, J.R.: Selberg integral theory and Muttalib–Borodin ensembles. arXiv:1612.06517
Forrester, P.J., Liu, D.-Z.: Raney distributions and random matrix theory. J. Stat. Phys. 158, 1051 (2015)
Forrester, P.J., Liu, D.-Z.: Singular values for products of complex Ginibre matrices with a source: hard edge limit and phase transition. Commun. Math. Phys. 344, 333 (2016)
Forrester, P.J., Liu, D.-Z., Zinn-Justin, P.: Equilibrium problems for Raney densities. Nonlinearity 28, 2265 (2015)
Forrester, P.J., Rains, E.M.: Interpretations of some parameter dependent generalizations of classical matrix ensembles. Probab. Theory Relat. Fields 131, 1 (2005)
Forrester, P.J., Wang, D.: Muttalib–Borodin ensembles in random matrix theory—realisations and correlation functions. Electron. J. Prob. 22, paper no. 54 (2017)
Fyodorov, Y.V.: Negative moments of characteristic polynomials of random matrices: Ingham–Siegel integral as an alternative to Hubbard–Stratonovich transformation. Nucl. Phys. B 621, 643 (2002)
Fyodorov, Y.V., Strahov, E.: Characteristic polynomials of random Hermitian matrices and Duistermaat–Heckman localisation on non-compact Kähler manifolds. Nucl. Phys. B 630, 453 (2002)
Harish-Chandra: Differential operators on a semisimple Lie algebra. Am. J. Math. 79, 87 (1957)
Ipsen, J. R.: Products of independent Gaussian random matrices. PhD thesis, Bielefeld University (2015) (arXiv:1510.06128)
Ipsen, J.R., Kieburg, M.: Weak commutation relations and eigenvalue statistics for products of rectangular random matrices. Phys. Rev. E 89, 032106 (2014)
Itzykson, C., Zuber, J.-B.: The planar approximation. II. J. Math. Phys. 21, 411 (1980)
Kieburg, M., Kösters, H.: Exact relation between singular value and eigenvalue statistics. Random Matrices: Theor. Appl. 5, 1650015 (2016)
Kieburg, M., Kuijlaars, A.B.J., Stivigny, D.: Singular value statistics of matrix products with truncated unitary matrices. Int. Math. Res. Not. 2016, 3392 (2016)
Kieburg, M., Verbaarschot, J.J.M., Zafeiropolous, S.: Spectral properties of the Wilson-Dirac operator and random matrix theory. Phys. Rev. D 88, 094502 (2013)
Konhauser, J.D.E.: Biorthogonal polynomials suggested by the Laguerre polynomials. Pac. J. Math. 21, 303 (1967)
Kuijlaars, A.B.J.: Transformations of polynomial ensembles. In: Modern Trends in Constructive Function Theory, vol. 253. American Mathematical Society (2016)
Kuijlaars, A.B.J., Roman, P.: Spherical functions approach to sums of random Hermitian matrices. arXiv:1611.08932
Kuijlaars, A.B.J., Stivigny, D.: Singular values of products of random matrices and polynomial ensembles. Random Matrices: Theor. Appl. 3, 1450011 (2014)
Kuijlaars, A.B.J., Zhang, L.: Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scaling limits. Commun. Math. Phys. 332, 759 (2014)
Kumar, S.: Random matrix ensembles involving Gaussian Wigner and Wishart matrices, and biorthogonal structure. Phys. Rev. E 92, 032903 (2015)
Liu, D.-Z.: Singular values for products of two coupled random matrices: hard edge phase transition. Constr Approx (2017). https://doi.org/10.1007/s00365-017-9389-z
Liu, D.-Z., Wang, D., Zhang, L.: Bulk and soft-edge universality for singular values of products of Ginibre random matrices. Ann. Inst. H. Poincaré Probab. Stat. 52, 1734 (2016)
Mathai, A.M., Saxena, R.K., Haubold, H.J.: The H-Function: Theory and Applications. Springer, Berlin (2009)
Müller, R.R.: On the asymptotic eigenvalue distribution of concatenated vector-valued fading channels. IEEE Trans. Inf. Theory 48, 2086 (2002)
Muttalib, K.A.: Random matrix models with additional interactions. J. Phys. A 28, L159 (1995)
Nica, A., Speicher, R.: Lectures on the Combinatorics of Free Probability. Cambridge University Press, Cambridge (2006)
Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W., (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (Print companion to [DLMF]) (2010)
Pastur, L.A., Shcherbina, M.: Eigenvalue Distribution of Large Random Matrices. American Mathematical Society, Providence (2011)
Penson, K.A., Zyczkowski, K.: Product of Ginibre matrices: Fuss–Catalan and Raney distributions. Phys. Rev. E 83, 061118 (2011)
Pruisken, A.M.M., Schäfer, L.: The Anderson model for electron localisation non-linear sigma model, asymptotic gauge invariance. Nucl. Phys. B 200, 22 (1982)
Simon, B.: The Christoffel–Darboux kernel. Proceedings of Symposia in Pure Mathematics 79, 295 (2008)
Terras, A.: Harmonic Analysis on Symmetric Spaces and Applications, vol. 2. Springer, Berlin (1988)
Wigner, E.: Statistical Properties of real symmetric matrices with many dimensions. In: Canadian Mathematical Congress Proceedings, University of Toronto Press 174 (1957)
Zhang, L.: Local universality in biorthogonal Laguerre ensembles. J. Stat. Phys. 161, 688 (2015)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Vadim Gorin.
Rights and permissions
About this article
Cite this article
Forrester, P.J., Ipsen, J.R. & Liu, DZ. Matrix Product Ensembles of Hermite Type and the Hyperbolic Harish-Chandra–Itzykson–Zuber Integral. Ann. Henri Poincaré 19, 1307–1348 (2018). https://doi.org/10.1007/s00023-018-0654-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-018-0654-x