Skip to main content

Equidistribution for Standard Pairs in Planar Dispersing Billiard Flows

Abstract

We prove exponential correlation decay in dispersing billiard flows on the 2-torus assuming finite horizon and lack of corner points. With applications aimed at describing heat conduction, the highly singular initial measures are concentrated here on 1-dimensional submanifolds (given by standard pairs) and the observables are supposed to satisfy a generalized Hölder continuity property. The result is based on the exponential correlation decay bound of Baladi et al. (Invent Math, 211:39–117, 2018. https://doi.org/10.1007/s00222-017-0745-1) obtained for Hölder continuous observables in these billiards. The model dependence of the bounds is also discussed.

This is a preview of subscription content, access via your institution.

References

  1. Baladi, V., Demers, M.F., Liverani, C.: Exponential decay of correlations for finite horizon Sinai billiard flows. Invent. Math. 211, 39–177 (2018). https://doi.org/10.1007/s00222-017-0745-1

  2. Baladi, V., Kuna, T., Lucarini, V.: Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables. Nonlinearity 30(3), 1204 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Baladi, V., Kuna, T., Lucarini, V.: Linear and fractional response for the SRB measure of smooth hyperbolic attractors and discontinuous observables. Nonlinearity 30(8), C4 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bálint, P., Gilbert, T., Nándori, P., Szász, D., Tóth, I.P.: On the limiting Markov process of energy exchanges in a rarely interacting ball-piston gas. J. Stat. Phys. 166, 903–925 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bálint, P., Nándori, P., Szász, D., Tóth, I. P.: Stochastic dynamics from a Newtonian one. Work in progress

  6. Bálint, P., Chernov, N., Dolgopyat, D.: Limit theorems for dispersing billiards with cusps. Commun. Math. Phys. 308, 479–510 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bálint, P., Chernov, N., Dolgopyat, D.: Convergence of moments for dispersing billiards with cusps. Contemp. Math. 698, 35–69 (2017)

    Article  MathSciNet  Google Scholar 

  8. Chernov, N.: Decay of correlations and dispersing billiards. J. Stat. Phys. 94, 513–556 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Chernov, N.: Advanced statistical properties of dispersing billiards. J. Stat. Phys. 122, 1061–1094 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Chernov, N.: A stretched exponential bound on time correlations for billiard flows. J. Stat. Phys. 127, 21–50 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Chernov, N., Dolgopyat, D.: Particle’s drift in self-similar billiards. Ergod. Theory Dyn. Syst. 28, 389–403 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chernov, N., Dolgopyat, D.: Brownian Brownian motion. I. Mem. Am. Math. Soc. 927, 198 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Chernov, N., Dolgopyat, D.: Galton board: limit theorems and recurrence. Journal AMS 22, 821–858 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Chernov, N., Dolgopyat, D.: Anomalous current in periodic Lorentz gases with infinite horizon. Rus. Math. Surv. 64, 651–699 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chernov, N., Markarian, R.: Chaotic billiards. In: Mathematical Surveys and Monographs, vol. 127. American Mathematical Society (2006)

  16. Climenhaga, V., Dolgopyat, D., Pesin, Y.: Non-stationary non-uniform hyperbolicity: SRB measures for dissipative maps. Commun. Math. Phys. 346, 553–602 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Climenhaga, V., Pesin Y., Zelerowicz, A.: A geometric approach to equilibrium measures via Charathéodory construction. In preparation, (2017), pp. 36

  18. Demers, M., Zhang, H.-K.: A functional analytic approach to perturbations of the Lorentz gas. Commun. Math. Phys. 324, 767–863 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Dolgopyat, D.: Limit theorems for partially hyperbolic systems. Trans. Am. Math. Soc. 356, 1637–1689 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dolgopyat, D.: Averaging and Invariant measures. Mosc. Math. J. 5, 537–576 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Dolgopyat, D., Liverani, C.: Energy transfer in a fast-slow Hamiltonian system. Commun. Math. Phys. 328, 201–225 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Dolgopyat, D., Nándori, P.: Non equilibrium density profiles in Lorentz tubes with thermostated boundaries. CPAM 69, 649–692 (2016)

    MATH  Google Scholar 

  23. Dolgopyat, D., Nándori, P.: The first encounter of two billiard particles of small radius. http://arxiv.org/abs/1603.07590

  24. Dolgopyat, D., de Simoi, J.: Dynamics of some piecewise smooth Fermi-Ulam Models. Chaos 22, paper 026124 (2012)

  25. Dolgopyat, D., Szász, D., Varjú, T.: Recurrence properties of Lorentz gas. Duke Math. J. 142, 241–281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dolgopyat, D., Szász, D., Varjú, T.: Limit theorems for locally perturbed Lorentz processes. Duke Math. J. 148, 459–499 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Eslami, P.: Stretched-exponential mixing for \(C^{1+\alpha }\) skew products with discontinuities. Ergod. Theory Dyn. Syst. 369(2), 783–803 (2017)

    Google Scholar 

  28. Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergod. Theory Dyn. Syst. 26, 189–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Keller, G.: Generalized bounded variation and applications to piecewise monotonic transformations. Z. Wahrscheinlichkeitstheorie verw. Geb. 69, 461–478 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  30. Krámli, A., Simányi, N., and Szász, D.: A ,transversal’ fundamental theorem for semi-dispersing billiards. Commun. Math. Phys. 129, 535–560 (1990). Erratum: ibidem 129, 207–208 (1991)

  31. Melbourne, I.: Rapid decay of correlations for nonuniformly hyperbolic flows. Trans. Am. Math. Soc. 359, 2421–2441 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Porte, M.: Linear response for Dirac observables of Anosov diffeomorphisms. http://arxiv.org/abs/1710.06712

  33. Saussol, B.: Absolutely continuous invariant measures for multidimensional expanding maps. Isr. J. Math. 116, 223–248 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Shah, K., Turaev, D., Gelreich, V., and Rom-Kedar, V.: Equilibration of energy in slow-fast systems. In: Proceedings of the national academy of sciences. https://doi.org/10.1073/pnas.1706341114

  35. Tóth, IP.: Generalized Hölder continuity and oscillation functions. https://arxiv.org/abs/1707.00357

  36. Siani, Y.G.: Dynamical systems with elastic reflections. Rus. Mat. Surv. 25, 137–189 (1970)

    Article  Google Scholar 

  37. Young, L.S.: Statistical properties of systems with some hyperbolicity including certain billiards. Ann. Math. 147, 585–650 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Bálint.

Additional information

Communicated by Dmitry Dolgopyat.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bálint, P., Nándori, P., Szász, D. et al. Equidistribution for Standard Pairs in Planar Dispersing Billiard Flows. Ann. Henri Poincaré 19, 979–1042 (2018). https://doi.org/10.1007/s00023-018-0648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0648-8