Abstract
The derivation of effective evolution equations is central to the study of non-stationary quantum many-body systems, and widely used in contexts such as superconductivity, nuclear physics, Bose–Einstein condensation and quantum chemistry. We reformulate the Dirac–Frenkel approximation principle in terms of reduced density matrices and apply it to fermionic and bosonic many-body systems. We obtain the Bogoliubov–de Gennes and Hartree–Fock–Bogoliubov equations, respectively. While we do not prove quantitative error estimates, our formulation does show that the approximation is optimal within the class of quasifree states. Furthermore, we prove well-posedness of the Bogoliubov–de Gennes equations in energy space and discuss conserved quantities.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Adami, R., Golse, F., Teta, A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127(6), 1193–1220 (2007)
Anapolitanos, I.: Rate of convergence towards the Hartree–von Neumann limit in the mean-field regime. Lett. Math. Phys. 98(1), 1–31 (2011)
Bach, V., Breteaux, S., Chen, T., Fröhlich, J., Sigal, I.M.: The time-dependent Hartree–Fock–Bogoliubov equations for Bosons. arXiv:1602.05171 (2016)
Bach, V., Breteaux, S., Petrat, S., Pickl, P., Tzaneteas, T.: Kinetic energy estimates for the accuracy of the time-dependent Hartree–Fock approximation with Coulomb interaction. J. Math. Pures Appl. (9) 105(1), 1–30 (2016)
Bardos, C., Golse, F., Gottlieb, A.D., Mauser, N.J.: Mean field dynamics of fermions and the time-dependent Hartree–Fock equation. J. Math. Pures Appl. 82(6), 665–683 (2003)
Bardos, C., Golse, F., Mauser, N.J.: Weak coupling limit of the \(N\)-particle Schrödinger equation. Methods Appl. Anal. 7(2), 275–293 (2000)
Benedikter, N., de Oliveira, G., Schlein, B.: Quantitative derivation of the Gross–Pitaevskii equation. Commun. Pure Appl. Math. 68(8), 1399–1482 (2015)
Benedikter, N., Jakšić, V., Porta, M., Saffirio, C., Schlein, B.: Mean-field evolution of fermionic mixed states. Commun. Pure Appl. Math. 69(12), 2250–2303 (2016)
Benedikter, N., Porta, M., Schlein, B.: Mean-field dynamics of fermions with relativistic dispersion. J. Math. Phys. 55(2), 021901 (2014)
Benedikter, N., Porta, M., Schlein, B.: Mean-field evolution of fermionic systems. Commun. Math. Phys. 331(3), 1087–1131 (2014)
Boccato, C., Cenatiempo, S., Schlein, B.: Quantum many-body fluctuations around nonlinear Schrödinger dynamics. Ann. Henri Poincaré 18(1), 113–191 (2017)
Bove, A., Da Prato, G., Fano, G.: An existence proof for the Hartree–Fock time-dependent problem with bounded two-body interaction. Commun. Math. Phys. 37, 183–191 (1974)
Bove, A., Da Prato, G., Fano, G.: On the Hartree–Fock time-dependent problem. Commun. Math. Phys. 49(1), 25–33 (1976)
Chadam, J.M.: The time-dependent Hartree–Fock equations with Coulomb two-body interaction. Commun. Math. Phys. 46(2), 99–104 (1976)
Chadam, J.M., Glassey, R.T.: Global existence of solutions to the Cauchy problem for time-dependent Hartree equations. J. Math. Phys. 16, 1122–1130 (1975)
Chen, L., Lee, J.O., Schlein, B.: Rate of convergence towards Hartree dynamics. J. Stat. Phys. 144(4), 872–903 (2011)
Chen, L., Sigal, I.M.: On the Bogolubov–de Gennes Equations. arXiv:1701.06080 (2017)
Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. International Series of Monographs on Physics 27. Clarendon Press (1981)
Dunford, N., Schwartz, J.T.: Linear Operators I: General Theory. Pure and Applied Mathematics. Interscience Publishers, New York (1958)
Elgart, A., Erdős, L., Schlein, B., Yau, H.-T.: Nonlinear Hartree equation as the mean field limit of weakly coupled fermions. J. Math. Pures Appl. (9) 83(10), 1241–1273 (2004)
Elgart, A., Erdős, L., Schlein, B., Yau, H.-T.: Gross–Pitaevskii equation as the mean field limit of weakly coupled bosons. Arch. Ration. Mech. Anal. 179(2), 265–283 (2006)
Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)
Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167(3), 515–614 (2007)
Erdős, L., Schlein, B., Yau, H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22(4), 1099–1156 (2009)
Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. Math. (2) 172(1), 291–370 (2010)
Erdős, L., Yau, H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)
Frenkel, J.I.: Wave Mechanics: Advanced General Theory. Clarendon Press, Oxford (1934)
Fröhlich, J., Knowles, A.: A microscopic derivation of the time-dependent Hartree–Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145(1), 23 (2011)
Fröhlich, J., Knowles, A., Schwarz, S.: On the mean-field limit of bosons with Coulomb two-body interaction. Commun. Math. Phys. 288, 1023–1059 (2009)
Griesemer, M.: On the dynamics of polarons in the strong-coupling limit. arXiv:1612.00395 (2016)
Grillakis, M., Machedon, M.: Pair excitations and the mean field approximation of interacting Bosons, I. Commun. Math. Phys. 324(2), 601–636 (2013)
Grillakis, M., Machedon, M.: Pair excitations and the mean field approximation of interacting Bosons, II. Commun. Partial Differ. Equ. 42(1), 24–67 (2017)
Grillakis, M., Machedon, M., Margetis, D.: Second-order corrections to mean field evolution of weakly interacting Bosons, I. Commun. Math. Phys. 294(1), 273 (2009)
Grillakis, M., Machedon, M., Margetis, D.: Second-order corrections to mean field evolution of weakly interacting Bosons, II. Adv. Math. 228(3), 1788–1815 (2011)
Grümm, H.R.: Two theorems about \(\fancyscript {C}_p\). Rep. Math. Phys. 4(3), 211–215 (1973)
Hainzl, C., Lenzmann, E., Lewin, M., Schlein, B.: On blowup for time-dependent generalized Hartree–Fock equations. Ann. Henri Poincaré 11, 1023–1052 (2010)
Hainzl, C., Schlein, B.: Dynamics of Bose–Einstein condensates of fermion pairs in the low density limit of BCS theory. J. Funct. Anal. 265(3), 399–423 (2013)
Isozaki, H.: On the existence of solutions of time-dependent Hartree–Fock equations. Publ. Res. Inst. Math. Sci. 19(1), 107–115 (1983)
Kirkpatrick, K., Schlein, B., Staffilani, G.: Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics. Am. J. Math. 133(1), 91–130 (2011)
Knowles, A., Pickl, P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298(1), 101–138 (2010)
Lenzmann, E., Lewin, M.: Minimizers for the Hartree–Fock–Bogoliubov theory of neutron stars and white dwarfs. Duke Math. J. 152(2), 257–315 (2010)
Lubich, C.: From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. Zurich Lectures in Advanced Mathematics. European Mathematical Society (2008)
Nam, P.T., Napiórkowski, M.: Bogoliubov correction to the mean-field dynamics of interacting bosons. arXiv:1509.04631 (2015)
Narnhofer, H., Sewell, G.L.: Vlasov hydrodynamics of a quantum mechanical model. Commun. Math. Phys. 79(1), 9–24 (1981)
Petrat, S.: Hartree–Fock Corrections in a Mean-field Limit for Fermions. arXiv:1609.04754 (2016)
Petrat, S., Pickl, P.: A new method and a new scaling for deriving fermionic mean-field dynamics. Math. Phys. Anal. Geom. 19(1), Art. 3, 51 (2016)
Pickl, P.: Derivation of the time dependent Gross–Pitaevskii equation without positivity condition on the interaction. J. Stat. Phys. 140(1), 76–89 (2010)
Pickl, P.: A simple derivation of mean field limits for quantum systems. Lett. Math. Phys. 97(2), 151–164 (2011)
Pickl, P.: Derivation of the time dependent Gross–Pitaevskii equation with external fields. Rev. Math. Phys. 27(1), 1550003 (2015)
Porta, M., Rademacher, S., Saffirio, C., and Schlein, B.: Mean field evolution of fermions with Coulomb interaction. arXiv:1608.05268 (2016)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness. Academic Press, London (1975)
Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Revised and Enlarged Edition. Elsevier Science, Amsterdam (1981)
Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)
Schmid, J., Griesemer, M.: Kato’s theorem on the integration of non-autonomous linear evolution equations. Math. Phys. Anal. Geom. 17(3), 9154 (2014)
Segal, I.: Non-linear semi-groups. Ann. Math. 2(78), 339–364 (1963)
Sohinger, V.: A rigorous derivation of the defocusing cubic nonlinear Schrödinger equation on \(\mathbb{T}^3\) from the dynamics of many-body quantum systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 32(6), 1337–1365 (2015)
Solovej, J.P.: Many-Body Quantum Mechanics. Lecture Notes ESI Vienna, http://www.math.ku.dk/~solovej/MANYBODY/ (2014)
Spohn, H.: On the Vlasov hierarchy. Math. Methods Appl. Sci. 3(4), 445–455 (1981)
Acknowledgements
Open access funding provided by Institute of Science and Technology (IST Austria). The authors acknowledge support by ERC Advanced Grant 321029 and by VILLUM FONDEN via the QMATH Centre of Excellence (Grant No. 10059). The authors would like to thank Sébastien Breteaux, Enno Lenzmann, Mathieu Lewin and Jochen Schmid for comments and discussions about well-posedness of the Bogoliubov–de Gennes equations.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Jan Derezinki.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Benedikter, N., Sok, J. & Solovej, J.P. The Dirac–Frenkel Principle for Reduced Density Matrices, and the Bogoliubov–de Gennes Equations. Ann. Henri Poincaré 19, 1167–1214 (2018). https://doi.org/10.1007/s00023-018-0644-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-018-0644-z