Advertisement

On the Asymptotic Behavior of Static Perfect Fluids

  • Lars Andersson
  • Annegret Y. BurtscherEmail author
Open Access
Article
  • 38 Downloads

Abstract

Static spherically symmetric solutions to the Einstein–Euler equations with prescribed central densities are known to exist, be unique and smooth for reasonable equations of state. Some criteria are also available to decide whether solutions have finite extent (stars with a vacuum exterior) or infinite extent. In the latter case, the matter extends globally with the density approaching zero at infinity. The asymptotic behavior largely depends on the equation of state of the fluid and is still poorly understood. While a few such unbounded solutions are known to be asymptotically flat with finite ADM mass, the vast majority are not. We provide a full geometric description of the asymptotic behavior of static spherically symmetric perfect fluid solutions with linear equations of state and polytropic-type equations of state with index \(n>5\). In order to capture the asymptotic behavior, we introduce a notion of scaled quasi-asymptotic flatness, which encompasses the notion of asymptotic conicality. In particular, these spacetimes are asymptotically simple.

Notes

Acknowledgements

The authors would like to thank Patryk Mach for discussions on the Lane–Emden equation and Naresh Dadhich for pointing out the conformal asymptotically flat geometry. We would also like to thank Claes Uggla for correspondence regarding their dynamical systems approach, Piotr Chruściel for information on the asymptotically flat situation, Anna Sakovich for pointing out references related to notions of mass and Shadi Tahvildar-Zadeh for general discussions on the equations of state. A.B. acknowledges financial support during an extended research stay at the Riemann Center for Geometry and Physics at the Leibniz University Hannover, during which this project was initiated. The major part of the project was carried out at the University of Bonn and supported by the Sofja Kovalevskaja award of the Humboldt Foundation endowed by the German Federal Ministry of Education and Research (held by Roland Donninger). The authors also gratefully acknowledge financial support in connection with a research stay at the Erwin Schrödinger Institute in Vienna during the “Geometry and Relativity" program in 2017, where the project was finalized.

References

  1. 1.
    Anderson, M.T.: On the structure of asymptotically de Sitter and anti-de Sitter spaces. Adv. Theor. Math. Phys. 8(5), 861–894 (2004)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Andréasson, H., Fajman, D., Thaller, M.: Models for self-gravitating photon shells and geons. Ann. Henri Poincaré 18(2), 681–705 (2017)ADSMathSciNetzbMATHGoogle Scholar
  3. 3.
    Andréasson, H., Rein, G.: On the steady states of the spherically symmetric Einstein–Vlasov system. Class. Quantum Gravity 24(7), 1809–1832 (2007)ADSMathSciNetzbMATHGoogle Scholar
  4. 4.
    Ashtekar, A., Magnon, A.: Asymptotically anti-de Sitter space-times. Class. Quantum Gravity 1(4), L39–L44 (1984)ADSMathSciNetGoogle Scholar
  5. 5.
    Baiotti, L., Hawke, I., Montero, P.J., Löffler, F., Rezzolla, L., Stergioulas, N., Fong, J.A., Seidel, E.: Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole. Phys. Rev. D 71, 024035 (2005)ADSGoogle Scholar
  6. 6.
    Barriola, M., Vilenkin, A.: Gravitational field of a global monopole. Phys. Rev. Lett. 63(4), 341–343 (1989)ADSGoogle Scholar
  7. 7.
    Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39(5), 661–693 (1986)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Baumgarte, T.W., Rendall, A.D.: Regularity of spherically symmetric static solutions of the Einstein equations. Class. Quantum Gravity 10(2), 327–332 (1993)ADSMathSciNetGoogle Scholar
  9. 9.
    Beig, R., Karadi, M.: On unbounded bodies with finite mass: asymptotic behaviour. Class. Quantum Gravity 18(4), 671–676 (2001)ADSMathSciNetzbMATHGoogle Scholar
  10. 10.
    Beig, R., Simon, W.: On the spherical symmetry of static perfect fluids in general relativity. Lett. Math. Phys. 21(3), 245–250 (1991)ADSMathSciNetzbMATHGoogle Scholar
  11. 11.
    Beig, R., Simon, W.: On the uniqueness of static perfect-fluid solutions in general relativity. Commun. Math. Phys. 144(2), 373–390 (1992)ADSMathSciNetzbMATHGoogle Scholar
  12. 12.
    Brauer, U., Karp, L.: Local existence of classical solutions for the Einstein–Euler system using weighted Sobolev spaces of fractional order. C. R. Math. Acad. Sci. Paris 345(1), 49–54 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Brauer, U., Karp, L.: Well-posedness of the Einstein–Euler system in asymptotically flat spacetimes: the constraint equations. J. Differ. Equ. 251(6), 1428–1446 (2011)ADSMathSciNetzbMATHGoogle Scholar
  14. 14.
    Brauer, U., Karp, L.: Local existence of solutions of self gravitating relativistic perfect fluids. Commun. Math. Phys. 325(1), 105–141 (2014)ADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    Buchdahl, H.A.: A relativistic fluid sphere resembling the Emden polytrope of index \(5\). Astrophys. J. 140, 1512–1516 (1964)ADSMathSciNetGoogle Scholar
  16. 16.
    Buchdahl, H.A., Land, W.J.: The relativistic incompressible sphere. J. Aust. Math. Soc. 8(1), 6–16 (1968)Google Scholar
  17. 17.
    Burtscher, A.Y., LeFloch, P.G.: The formation of trapped surfaces in spherically-symmetric Einstein–Euler spacetimes with bounded variation. J. Math. Pures Appl. (9) 102(6), 1164–1217 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Cabezas, J.A., Martín, J., Molina, A., Ruiz, E.: An approximate global solution of Einstein’s equations for a rotating finite body. Gen. Relativ. Gravit. 39(6), 707–736 (2007)ADSMathSciNetzbMATHGoogle Scholar
  19. 19.
    Chandrasekhar, S.: A Limiting Case of Relativistic Equilibrium. General Relativity (Papers in Honour of J. L. Synge), pp. 185–199. Clarendon Press, Oxford (1972)Google Scholar
  20. 20.
    Chavanis, P.H.: Relativistic stars with a linear equation of state: analogy with classical isothermal spheres and black holes. Astron. Astrophys. 483(3), 673–698 (2008)ADSzbMATHGoogle Scholar
  21. 21.
    Christodoulou, D.: Self-gravitating relativistic fluids: a two-phase model. Arch. Ration. Mech. Anal. 130(4), 343–400 (1995)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Christodoulou, D.: Self-gravitating relativistic fluids: the continuation and termination of a free phase boundary. Arch. Ration. Mech. Anal. 133(4), 333–398 (1996)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Christodoulou, D.: Self-gravitating relativistic fluids: the formation of a free phase boundary in the phase transition from soft to hard. Arch. Ration. Mech. Anal. 134(2), 97–154 (1996)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Chruściel, P.: Boundary conditions at spatial infinity from a Hamiltonian point of view. Topological properties and global structure of space-time (Erice, 1985), NATO Advanced Science Institute Series B Physics, vol. 138, Plenum, New York, pp. 49–59 (1986)Google Scholar
  25. 25.
    Chruściel, P.T.: Lectures on Energy in General Relativity (2010). http://homepage.univie.ac.at/piotr.chrusciel/teaching/Energy/Energy.pdf. Accessed 7 Mar 2016
  26. 26.
    Chruściel, P.T., Delay, E.: Gluing constructions for asymptotically hyperbolic manifolds with constant scalar curvature. Commun. Anal. Geom. 17(2), 343–381 (2009)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Dadhich, N.: Isothermal spherical perfect fluid model: uniqueness and conformal mapping (1996). Arxiv~e-prints arXiv:gr-qc/9605002
  28. 28.
    Christodoulou, D.: A conformal mapping and isothermal perfect fluid model. Gen. Relativ. Gravit. 28(12), 1455–1463 (1996)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Dahl, M., Gicquaud, R., Sakovich, A.: Asymptotically hyperbolic manifolds with small mass. Commun. Math. Phys. 325(2), 757–801 (2014)ADSMathSciNetzbMATHGoogle Scholar
  30. 30.
    Feng, W.-X., Geng, C.-Q., Kao, W.F., Luo, L.-W.: Equation of state of neutron stars with junction conditions in the Starobinsky model. Int. J. Mod. Phys. D 27, 1750186 (2018)ADSGoogle Scholar
  31. 31.
    Feroze, T., Tariq, H.: Exact solutions of the Einstein equations with polytropic equations of state. Can. J. Phys. 93(6), 637–640 (2015)ADSGoogle Scholar
  32. 32.
    Flammer, P.D.: Spinning solutions in general relativity with infinite central density. Gen. Relativ. Grav. 50(5), 51 (2018)ADSMathSciNetzbMATHGoogle Scholar
  33. 33.
    Fournodavlos, G., Schlue, V.: On “hard stars" in general relativity (2017). Arxiv e-prints arXiv:1710.00754
  34. 34.
    Frauendiener, J.: Conformal infinity. Living Rev. Relativ. 7, 1 (2004), 82 pp. (electronic)Google Scholar
  35. 35.
    Friedman, J.L., Stergioulas, N.: Rotating Relativistic Stars. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2013)zbMATHGoogle Scholar
  36. 36.
    Friedrich, H.: Smoothness at null infinity and the structure of initial data. In: Chruściel, P.T., Friedrich, H. (eds.) The Einstein Equations and the Large Scale Behavior of Gravitational Fields, pp. 121–203. Birkhäuser, Basel (2004)Google Scholar
  37. 37.
    Groah, J., Smoller, J., Temple, B.: Shock Wave Interactions in General Relativity. A Locally Inertial Glimm Scheme for Spherically Symmetric Spacetimes. Springer Monographs in Mathematics. Springer, New York (2007)zbMATHGoogle Scholar
  38. 38.
    Harko, T., Mak, M.K.: Exact power series solutions of the structure equations of the general relativistic isotropic fluid stars with linear barotropic and polytropic equations of state. Astrophys. Space Sci 361(9), 283 (2016)ADSMathSciNetGoogle Scholar
  39. 39.
    Hartman, P.: On local homeomorphisms of Euclidean spaces. Bol. Soc. Mat. Mex. 2(5), 220–241 (1960)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Heinzle, J.M.: (In)finiteness of spherically symmetric static perfect fluids. Class. Quantum Gravity 19(11), 2835–2851 (2002)ADSMathSciNetzbMATHGoogle Scholar
  41. 41.
    Heinzle, J.M., Uggla, C.: Newtonian stellar models. Ann. Phys. 308(1), 18–61 (2003)ADSMathSciNetzbMATHGoogle Scholar
  42. 42.
    Heinzle, J.M., Röhr, N., Uggla, C.: Dynamical systems approach to relativistic spherically symmetric static perfect fluid models. Class. Quantum Gravity 20(21), 4567–4586 (2003)ADSMathSciNetzbMATHGoogle Scholar
  43. 43.
    Ivanov, B.V.: Integrable cases of gravitating static isothermal fluid spheres. J. Math. Phys. 43(2), 1029–1043 (2002)ADSMathSciNetzbMATHGoogle Scholar
  44. 44.
    Ivanov, B.V.: Relativistic static fluid spheres with a linear equation of state (2001). Arxiv~e-prints arXiv:gr-qc/0107032
  45. 45.
    LeFloch, P.G., Xiang, S.: Weakly regular fluid flows with bounded variation on the domain of outer communication of a Schwarzschild black hole spacetime. J. Math. Pures Appl. (9) 106(6), 1038–1090 (2016)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Lindblom, L.: Static uniform-density stars must be spherical in general relativity. J. Math. Phys. 29(2), 436–439 (1988)ADSMathSciNetzbMATHGoogle Scholar
  47. 47.
    Lindblom, L., Masood-ul-Alam, A.K.M.: On the spherical symmetry of static stellar models. Commun. Math. Phys. 162(1), 123–145 (1994)ADSMathSciNetzbMATHGoogle Scholar
  48. 48.
    Makino, T.: On spherically symmetric stellar models in general relativity. J. Math. Kyoto Univ. 38(1), 55–69 (1998)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Makino, T.: On the spiral structure of the \((R, M)\)-diagram for a stellar model of the Tolman–Oppenheimer–Volkoff equation. Funkcial. Ekvac. 43(3), 471–489 (2000)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Makino, T.: On spherically symmetric solutions of the Einstein–Euler equations. Kyoto J. Math. 56(2), 243–282 (2016)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Makino, T.: An application of the Nash–Moser theorem to the vacuum boundary problem of gaseous stars. J. Differ. Equ. 262(2), 803–843 (2017)ADSMathSciNetzbMATHGoogle Scholar
  52. 52.
    Martín, J., Molina, A., Ruiz, E.: Can rigidly rotating polytropes be sources of the Kerr metric? Class. Quantum Gravity 25(10), 105019 (2008). 12ADSMathSciNetzbMATHGoogle Scholar
  53. 53.
    Masood-ul-Alam, A.K.M.: On spherical symmetry of static perfect fluid spacetimes and the positive-mass theorem. Class. Quantum Gravity 4(3), 625–633 (1987)ADSMathSciNetzbMATHGoogle Scholar
  54. 54.
    Masood-ul-Alam, A.K.M.: A proof of the uniqueness of static stellar models with small \(d\xi /d p\). Class. Quantum Gravity 5(3), 409–421 (1988)ADSMathSciNetGoogle Scholar
  55. 55.
    Masood-ul-Alam, A.K.M.: Proof that static stellar models are spherical. Gen. Relativ. Gravitat. 39(1), 55–85 (2007)ADSMathSciNetzbMATHGoogle Scholar
  56. 56.
    Michel, B.: Geometric invariance of mass-like asymptotic invariants. J. Math. Phys. 52(5), 052504 (2011). 14ADSMathSciNetzbMATHGoogle Scholar
  57. 57.
    Nakamura, T.: General relativistic collapse of rotating stars. Ann. N. Y. Acad. Sci. 422(1), 56–81 (1984)ADSGoogle Scholar
  58. 58.
    Nilsson, U.S., Uggla, C.: General relativistic stars: linear equations of state. Ann. Phys. 286(2), 278–291 (2000)ADSMathSciNetzbMATHGoogle Scholar
  59. 59.
    Nilsson, U.S., Uggla, C.: General relativistic stars: polytropic equations of state. Ann. Phys. 286(2), 292–319 (2000)ADSMathSciNetzbMATHGoogle Scholar
  60. 60.
    Nucamendi, U., Sudarsky, D.: Quasi-asymptotically flat spacetimes and their ADM mass. Class. Quantum Gravity 14(5), 1309–1327 (1997)ADSMathSciNetzbMATHGoogle Scholar
  61. 61.
    Nucamendi, U., Sudarsky, D.: Black holes with zero mass. Class. Quantum Gravity 17(19), 4051–4058 (2000)ADSMathSciNetzbMATHGoogle Scholar
  62. 62.
    Oliynyk, T.A.: Dynamical relativistic liquid bodies I: constraing propagation (2017). Arxiv e-prints arXiv:1707.08219
  63. 63.
    Oliynyk, T.A.: Dynamical relativistic liquid bodies II: local-in-time existence and uniqueness (in preparation) Google Scholar
  64. 64.
    Paschalidis, V., Stergioulas, N.: Rotating stars in relativity. Living Rev. Relativ. 20, 7 (2017)ADSGoogle Scholar
  65. 65.
    Penrose, R.: Republication of: Conformal treatment of infinity. Gen. Relativ. Gravit. 43(3), 901–922 (2011)ADSzbMATHGoogle Scholar
  66. 66.
    Penrose, R.: Asymptotic properties of fields and space-times. Phys. Rev. Lett. 10, 66–68 (1963)ADSMathSciNetGoogle Scholar
  67. 67.
    Penrose, R.: Zero rest-mass fields including gravitation: asymptotic behaviour. Proc. R. Soc. Ser. A 284, 159–203 (1965)ADSMathSciNetzbMATHGoogle Scholar
  68. 68.
    Penrose, R., Rindler, W.: Spinors and Space-Time. Spinor and Twistor Methods in Space-Time Geometry. Cambridge Monographs on Mathematical Physics, vol. 2. Cambridge University Press, Cambridge (1986)zbMATHGoogle Scholar
  69. 69.
    Ramming, T., Rein, G.: Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the nonrelativistic and relativistic case—a simple proof for finite extension. SIAM J. Math. Anal. 45(2), 900–914 (2013)MathSciNetzbMATHGoogle Scholar
  70. 70.
    Rendall, A.D.: The initial value problem for a class of general relativistic fluid bodies. J. Math. Phys. 33(3), 1047–1053 (1992)ADSMathSciNetzbMATHGoogle Scholar
  71. 71.
    Rendall, A.D., Schmidt, B.G.: Existence and properties of spherically symmetric static fluid bodies with a given equation of state. Class. Quantum Gravity 8(5), 985–1000 (1991)ADSMathSciNetzbMATHGoogle Scholar
  72. 72.
    Rendall, A.D., Velázquez, J.J.L.: Veiled singularities for the spherically symmetric massless Einstein–Vlasov system. Ann. Henri Poincaré 18(11), 3565–3631 (2017)ADSMathSciNetzbMATHGoogle Scholar
  73. 73.
    Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  74. 74.
    Schaudt, U.M.: On static stars in Newtonian gravity and Lane–Emden type equations. Ann. Henri Poincaré 1(5), 945–976 (2000)ADSMathSciNetzbMATHGoogle Scholar
  75. 75.
    Schoen, R., Yau, S.T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65(1), 45–76 (1979)ADSMathSciNetzbMATHGoogle Scholar
  76. 76.
    Schoen, R., Yau, S.T.: Proof of the positive mass theorem. II. Commun. Math. Phys. 79(2), 231–260 (1981)ADSMathSciNetzbMATHGoogle Scholar
  77. 77.
    Shibata, M.: Collapse of rotating supramassive neutron stars to black holes: fully general relativistic simulations. Astrophys. J. 595, 992–999 (2003)ADSGoogle Scholar
  78. 78.
    Simon, W.: Criteria for (in)finite extent of static perfect fluids. In: Frauendiener, J., Friedrich, H. (eds.) The Conformal Structure of Space-Time. Lecture Notes in Physics, vol. 604, pp. 223–237. Springer, Berlin (2002)Google Scholar
  79. 79.
    Speck, J.R.: On the questions of local and global well-posedness for the hyperbolic PDEs occurring in some relativistic theories of gravity and electromagnetism. Rutgers, The State University of New Jersey, Ph.D. Thesis (2008)Google Scholar
  80. 80.
    Stergioulas, N.: Rotating stars in relativity. Living Rev. Relativ. 6, 3, 108 pp. (electronic), (2003). Revised reprint of the 1998 originalGoogle Scholar
  81. 81.
    Sternberg, S.: On the structure of local homeomorphisms of Euclidean \(n\)-space. II. Am. J. Math. 80, 623–631 (1958)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Tahvildar-Zadeh, A.S.: On the static spacetime of a single point charge. Rev. Math. Phys. 23(3), 309–346 (2011)MathSciNetzbMATHGoogle Scholar
  83. 83.
    Tolman, R.C.: Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55, 364–373 (1939)ADSzbMATHGoogle Scholar
  84. 84.
    Tooper, R.F.: General relativistic polytropic fluid spheres. Astrophys. J. 140, 434–459 (1964)ADSMathSciNetzbMATHGoogle Scholar
  85. 85.
    Tooper, R.F.: Adiabatic fluid spheres in general relativity. Astrophys. J. 142, 1541–1562 (1965)ADSMathSciNetGoogle Scholar
  86. 86.
    Wang, X.: The mass of asymptotically hyperbolic manifolds. J. Differ. Geom. 57(2), 273–299 (2001)MathSciNetzbMATHGoogle Scholar
  87. 87.
    Whittaker, J.M.: An interior solution in general relativity. Proc. R. Soc. A. 306, 1–3 (1968)ADSzbMATHGoogle Scholar
  88. 88.
    Witten, E.: A new proof of the positive energy theorem. Commun. Math. Phys. 80(3), 381–402 (1981)ADSMathSciNetzbMATHGoogle Scholar

Copyright information

© The Author(s) 2019

OpenAccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Albert Einstein Institute (Max Planck Institute for Gravitational Physics)PotsdamGermany
  2. 2.Department of MathematicsRutgers, The State University of New JerseyPiscatawayUSA
  3. 3.Department of MathematicsRadboud UniversityNijmegenThe Netherlands

Personalised recommendations