Advertisement

Annales Henri Poincaré

, Volume 19, Issue 2, pp 385–410 | Cite as

Recoupling Coefficients and Quantum Entropies

  • Matthias Christandl
  • M. Burak ŞahinoğluEmail author
  • Michael Walter
Article

Abstract

We prove that the asymptotic behavior of the recoupling coefficients of the symmetric group \(S_k\) is characterized by a quantum marginal problem: they decay polynomially in k if there exists a quantum state of three particles with given eigenvalues for their reduced density operators and exponentially otherwise. As an application, we deduce solely from symmetry considerations of the coefficients the strong subadditivity property of the von Neumann entropy, first proved by Lieb and Ruskai (J Math Phys 14:1938–1941, 1973). Our work may be seen as a non-commutative generalization of the representation-theoretic aspect of the recently found connection between the quantum marginal problem and the Kronecker coefficient of the symmetric group, which has applications in quantum information theory and algebraic complexity theory. This connection is known to generalize the correspondence between Weyl’s problem on the addition of Hermitian matrices and the Littlewood–Richardson coefficients of SU(d). In this sense, our work may also be regarded as a generalization of Wigner’s famous observation of the semiclassical behavior of the recoupling coefficients (here also known as 6j or Racah coefficients), which decay polynomially whenever a tetrahedron with given edge lengths exists. More precisely, we show that our main theorem contains a characterization of the possible eigenvalues of partial sums of Hermitian matrices thus presenting a representation-theoretic characterization of a generalization of Weyl’s problem. The appropriate geometric objects to SU(d) recoupling coefficients are thus tuples of Hermitian matrices and to \(S_k\) recoupling coefficients they are three-particle quantum states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coleman, A.J.: Structure of fermion density matrices. Rev. Mod. Phys. 35, 668–686 (1963)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Coleman, A.J., Yukalov, V.I.: Reduced Density Matrices: Coulson’s Challenge. Volume 72 of Lecture Notes in Chemistry. Springer, Berlin (2000)Google Scholar
  3. 3.
    Christandl, M., Mitchison, G.: The spectra of quantum states and the Kronecker coefficients of the symmetric group. Commun. Math. Phys. 261, 789–797 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Klyachko, A.A.: Quantum Marginal Problem and Representations of the Symmetric Group (2004). arXiv:quant-ph/0409113
  5. 5.
    Daftuar, S., Hayden, P.: Quantum state transformations and the Schubert calculus. Ann. Phys. 315, 80–122 (2004)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Walter, M., Doran, B., Gross, D., Christandl, M.: Entanglement polytopes: multiparticle entanglement from single-particle information. Science 340, 1205–1208 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Sawicki, A., Oszmaniec, M., Kuś, M.: Convexity of momentum map, Morse index, and quantum entanglement. Rev. Math. Phys. 26, 1450004 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sawicki, A., Oszmaniec, M., Kuś, M.: Critical sets of the total variance can detect all stochastic local operations and classical communication classes of multiparticle entanglement. Phys. Rev. A 86, 040304 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Liu, Y.-K.: Consistency of local density matrices is QMA-complete. In: Proceedings of the RANDOM, pp. 438–449 (2006)Google Scholar
  10. 10.
    Liu, Y.-K., Christandl, M., Verstraete, F.: Quantum computational complexity of the \(N\)-representability problem: QMA complete. Phys. Rev. Lett. 98, 110503 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer, Berlin (2004)zbMATHGoogle Scholar
  13. 13.
    Pippenger, N.: The inequalities of quantum information theory. IEEE Trans. Inf. Theory 49, 773–789 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Linden, N., Winter, A.: A new inequality for the von neumann entropy. Commun. Math. Phys. 259, 129–138 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cadney, J., Linden, N., Winter, A.: Infinitely many constrained inequalities for the Von Neumann entropy. IEEE Trans. Inf. Theory 58, 3657–3663 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Linden, N., Matús̆, F., Ruskai, M.B., Winter, A.: The quantum entropy cone of stabiliser states. In: Proceedings of the 8th TQC Guelph, LIPICS, vol. 22, p. 270 (2013)Google Scholar
  17. 17.
    Gross, D., Walter, M.: Stabilizer information inequalities from phase space distributions. J. Math. Phys. 54(8), 082201 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hayden, P., Headrick, M., Maloney, A.: Holographic mutual information is monogamous. Phys. Rev. D 87(4), 046003 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    Bao, N., Nezami, S., Ooguri, H., Stoica, B., Sully, J., Walter, M.: The holographic entropy cone. J. High Energy Phys. 2015(9), 1–48 (2015)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Christandl, M., Harrow, A., Mitchison, G.: The spectra of quantum states and the Kronecker coefficients of the symmetric group. Commun. Math. Phys. 277, 575–585 (2007)ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    Christandl, M., Doran, B., Kousidis, S., Walter, M.: Eigenvalue distributions of reduced density matrices. Commun. Math. Phys. 332(1), 1–52 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chan, T.H., Yeung, R.W.: On a relation between information inequalities and group theory. IEEE Trans. Inf. Theory 48, 1992–1995 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wigner, E.P.: Group Theory and Its Applications to the Quantum Mechanics of Atomic Spectra. Academic Press, London (1959)zbMATHGoogle Scholar
  24. 24.
    Racah, G.: Theory of complex spectra II. Phys. Rev. 62, 438–462 (1942)ADSCrossRefGoogle Scholar
  25. 25.
    Ooguri, H.: Topological lattice models in four dimensions. Mod. Phys. Lett. A 7, 2799–2810 (1992)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Reisenberger, M.P., Rovelli, C.: “Sum over surfaces” form of loop quantum gravity. Phys. Rev. D 56, 3490–3508 (1997)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Freidel, L., Louapre, D.: Asymptotics of \(6j\) and \(10j\) symbols. Class. Quant. Gravity 20, 1267–1294 (2003)ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    Barrett, J.W., Steele, C.M.: Asymptotics of relativistic spin networks. Class. Quant. Gravity 20, 1341–1362 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Gurau, R.: The Ponzano–Regge asymptotic of the \(6j\) symbol: an elementary proof. Ann. Henri Poincaré 9, 1413–1424 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Aquilanti, V., Haggard, H.M., Hedeman, A., Jeevanjee, N., Littlejohn, R.G., Yu, L.: Semiclassical mechanics of the Wigner \(6j\)-symbol. J. Phys. A 45, 065209 (2012)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Levin, M.A., Wen, X.-G.: String-net condensation: a physical mechanism for topological phases. Phys. Rev. B 71, 045110 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    Jordan, S.P.: Fast Quantum Algorithms for Approximating Some Irreducible Representations of Groups (2008). arXiv:0811.0562
  33. 33.
    Jordan, S.P.: Permutational quantum computing. Quantum Inf. Comp. 10, 470–497 (2010)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Akimoto, D., Hayashi, M.: Discrimination of the change point in a quantum setting. Phys. Rev. A 83, 052328 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Şahinoğlu, M.B.: On the Relation Between Symmetric Group \(6j\)-Coefficients and the Spectra of Tripartite Quantum States. Master thesis, ETH Zurich (2012)Google Scholar
  36. 36.
    Walter, M.: Multipartite Quantum States and their Marginals. PhD thesis, ETH Zurich, 2014. arXiv:1410.6820
  37. 37.
    Goodman, R., Wallach, N.R.: Symmetry, Representations and Invariants. Springer, Berlin (2009)CrossRefzbMATHGoogle Scholar
  38. 38.
    Harrow, A.: Applications of Coherent Classical Communication and the Schur Transform to Quantum Information Theory. PhD thesis, Massachusetts Institute of Technology (2005)Google Scholar
  39. 39.
    Bacon, D., Chuang, I.L., Harrow, A.W.: The quantum Schur and Clebsch–Gordan transforms: I. efficient qudit circuits. In: Proceedings of the SODA, pp. 1235–1244 (2007)Google Scholar
  40. 40.
    Hayashi, M.: Group Representation for Quantum Theory. Springer, Berlin (2017)CrossRefzbMATHGoogle Scholar
  41. 41.
    Keyl, M., Werner, R.F.: Estimating the spectrum of a density operator. Phys. Rev. A 64, 052311 (2001)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Alicki, R., Rudnicki, S., Sadowski, S.: Symmetry properties of product states for the system of \({N}\) \(n\)-level atoms. J. Math. Phys. 29, 1158–1162 (1988)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Hayashi, M., Matsumoto, K.: Quantum universal variable-length source coding. Phys. Rev. A 66, 022311 (2002)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Christandl, M., Renner, R.: Reliable quantum state tomography. Phys. Rev. Lett. 109, 120403 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    Roberts, J.: Classical \(6j\)-symbols and the tetrahedron. Geom. Topol. 3, 21–66 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Ponzano, G., Regge, T.: Semiclassical limit of Racah coefficients. In: Bloch, F., Cohen, S.G., de Shalit, A., Sambursky, S., Talmi, I. (eds.) Spectroscopic and Group Theoretic Methods in Physics: Racah Memorial Volume, pp. 1–58. North Holland, Amsterdam (1968)Google Scholar
  47. 47.
    Coecke, B.: Quantum picturalism. Contemp. Phys. 51, 59–83 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B. (ed.) New Structures for Physics, volume 813 of Lecture Notes in Physics, pp. 289–355. Springer, Berlin (2011)Google Scholar
  49. 49.
    Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. Walter de Gruyer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  50. 50.
    Hamermesh, M.: Group Theory and Its Application to Physical Problems. Dover, New York (1989)zbMATHGoogle Scholar
  51. 51.
    Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (1999)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    Nielsen, M.A., Petz, D.: A simple proof of the strong subadditivity inequality. Quant. Inf. Comp. 5, 507–315 (2005)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Ruskai, M.B.: Another short and elementary proof of strong subadditivity of quantum entropy. Rep. Math. Phys. 60, 1–12 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Effros, E.G.: A matrix convexity approach to some celebrated quantum inequalities. Proc. Nat. Acad. Sci. USA 106, 1006 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Renner, R.: Security of Quantum Key Distribution. PhD thesis, ETH Zurich (2005)Google Scholar
  56. 56.
    Gromov, M.: In a Search for a Structure, Part 1: On Entropy. http://www.ihes.fr/~gromov/PDF/structre-serch-entropy-july5-2012.pdf (2013)
  57. 57.
    Ruskai, M.B.: Inequalities for quantum entropy: a review with conditions for equality. J. Math. Phys. 43, 4358–4375 (2005)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Backens, M.: The \(6j\)-Symbols and an Extended Version of Horn’s Problem. Semester Thesis, ETH Zurich (2010)Google Scholar
  59. 59.
    Horn, A.: Eigenvalues of sums of Hermitian matrices. Pac. J. Math. 12, 225–241 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Klyachko, A.A.: Stable bundles, representation theory and Hermitian operators. Sel. Math. 4, 419–445 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Knutson, A., Tao, T.: The Honeycomb model of GL\(_{n}({C})\) tensor products I: proof of the saturation conjecture. J. Am. Math. Soc. 12, 1055–1090 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    Christandl, M.: A quantum information-theoretic proof of the relation between Horn’s problem and the Littlewood–Richardson coefficients. In: Proceedings of the CiE 2008, Lecture Notes in Computer Science, vol. 5028, pp. 120–128 (2008)Google Scholar
  63. 63.
    Higuchi, A., Sudbery, A., Szulc, J.: One-qubit reduced states of a pure many-qubit state: polygon inequalities. Phys. Rev. Lett. 90, 107902 (2003)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Nishiyama, K.: Restriction of the Irreducible Representations of GL\(_{n}\) to the Symmetric Group \(S_n\). http://rtweb.math.kyoto-u.ac.jp/home_kyo/mypapere.html (2000)
  65. 65.
    Fulton, W.: Young Tableaux. London Mathematical Society, London (1997)zbMATHGoogle Scholar
  66. 66.
    James, G., Kerber, A.: The Representation Theory of the Symmetric Group. Addison-Wesley, Reading (1981)Google Scholar
  67. 67.
    Littlewood, D.E.: Products and plethysms of characters with orthogonal, symplectic and symmetric groups. Can. J. Math. 10, 17–32 (1958)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    Murnaghan, F.D.: On the analysis of the Kronecker product of irreducible representations of \(S_n\). Proc. Nat. Acad. Sci. USA 41, 515–518 (1955)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Matthias Christandl
    • 1
  • M. Burak Şahinoğlu
    • 2
    Email author
  • Michael Walter
    • 3
    • 4
  1. 1.QMATH, Department of Mathematical SciencesUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.Institute for Quantum Information and MatterCalifornia Institute of TechnologyPasadenaUSA
  3. 3.QuSoftKorteweg-de Vries Institute for Mathematics Institute of Physics and Institute for Logic, Language and Computation University of AmsterdamAmsterdamThe Netherlands
  4. 4.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordUSA

Personalised recommendations