The Topological Classification of One-Dimensional Symmetric Quantum Walks

Abstract

We give a topological classification of quantum walks on an infinite 1D lattice, which obey one of the discrete symmetry groups of the tenfold way, have a gap around some eigenvalues at symmetry protected points, and satisfy a mild locality condition. No translation invariance is assumed. The classification is parameterized by three indices, taking values in a group, which is either trivial, the group of integers, or the group of integers modulo 2, depending on the type of symmetry. The classification is complete in the sense that two walks have the same indices if and only if they can be connected by a norm-continuous path along which all the mentioned properties remain valid. Of the three indices, two are related to the asymptotic behavior far to the right and far to the left, respectively. These are also stable under compact perturbations. The third index is sensitive to those compact perturbations which cannot be contracted to a trivial one. The results apply to the Hamiltonian case as well. In this case, all compact perturbations can be contracted, so the third index is not defined. Our classification extends the one known in the translation- invariant case, where the asymptotic right and left indices add up to zero, and the third one vanishes, leaving effectively only one independent index. When two translation-invariant bulks with distinct indices are joined, the left and right asymptotic indices of the joined walk are thereby fixed, and there must be eigenvalues at 1 or \(-\,1\) (bulk-boundary correspondence). Their location is governed by the third index. We also discuss how the theory applies to finite lattices, with suitable homogeneity assumptions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ahlbrecht, A., Scholz, V.B., Werner, A.H.: Disordered quantum walks in one lattice dimension. J. Math. Phys. 52(10), 102201 (2011). arXiv:1101.2298

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Ahlbrecht, A., Vogts, H., Werner, A.H., Werner, R.F.: Asymptotic evolution of quantum walks with random coin. J. Math. Phys. 52(4), 042201 (2011). arXiv:1009.2019

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Altland, A., Zirnbauer, M .R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55(2), 1142–1161 (1997)

    ADS  Article  Google Scholar 

  4. 4.

    Andruchow, E.: Pairs of projections: geodesics, Fredholm and compact pairs. Complex Anal. Oper. Theory 8(7), 1435–1453 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Asbóth, J.K.: Symmetries, topological phases, and bound states in the one-dimensional quantum walk. Phys. Rev. B 86(19), 195414 (2012). arXiv:1208.2143

    ADS  Article  Google Scholar 

  6. 6.

    Asbóth, J.K., Obuse, H.: Bulk-boundary correspondence for chiral symmetric quantum walks. Phys. Rev. B 88(12), 121406 (2013). arXiv:1303.1199

    ADS  Article  Google Scholar 

  7. 7.

    Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120(1), 220–237 (1994)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Barkhofen, S., Nitsche, T., Elster, F., Lorz, L., Gabris, A., Jex, I., Silberhorn, C.: Measuring topological invariants and protected bound states in disordered discrete time quantum walks. (2016). arXiv:1606.00299

  9. 9.

    Brown, L.G., Douglas, R.G., Fillmore, P.A.: Unitary equivalence modulo the compact operators and extensions of C*-algebras. In Proceedings: Dalhousie University, Halifax, pp. 58–128. Springer (1973)

  10. 10.

    Carpentier, D., Delplace, P., Fruchart, M., Gawędzki, K.: Topological index for periodically driven time-reversal invariant 2D systems. Phys. Rev. Lett. 114(10), 106806 (2015). arXiv:1407.7747

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Carpentier, D., Delplace, P., Fruchart, M., Gawędzki, K., Tauber, C.: Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals. Nucl. Phys. B 896, 779–834 (2015). arXiv:1503.04157

    ADS  Article  MATH  Google Scholar 

  12. 12.

    Cedzich, C., Grünbaum, F .A., Stahl, C., Werner, A .H., Werner, R .F.: Bulk-edge correspondence of one-dimensional quantum walks. J. Phys. A Math. Theor. 49(21), 21LT01 (2016). arXiv:1502.02592

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Cedzich, C., Grünbaum, F.A., Geib, T., Stahl, C., Velázquez, L., Werner, A.H., Werner, R.F.: Complete homotopy invariants for translation invariant symmetric quantum walks on a chain. In preparation

  14. 14.

    Cedzich, C., Grünbaum, F.A., Velázquez, L., Werner, A.H., Werner, R.F.: A quantum dynamical approach to matrix Khrushchev’s formulas. Commun. Pure Appl. Math. 69(5), 909–957 (2016). arXiv:1405.0985

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Cedzich, C., Rybár, T., Werner, A.H., Alberti, A., Genske, M., Werner, R.F.: Propagation of quantum walks in electric fields. Phys. Rev. Lett. 111(16), 160601 (2013). arXiv:1302.2081

    ADS  Article  Google Scholar 

  16. 16.

    Chen, X., Gu, Z.-C., Wen, X.-G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83(3), 035107 (2011). arXiv:1008.3745

    ADS  Article  Google Scholar 

  17. 17.

    Stahl, C.: Interactive tool at https://qig.itp.uni-hannover.de/bulkedge/sse

  18. 18.

    Genske, M., Alt, W., Steffen, A., Werner, A.H., Werner, R.F., Meschede, D., Alberti, A.: Electric quantum walks with individual atoms. Phys. Rev. Lett. 110(19), 190601 (2013). arXiv:1302.2094

    ADS  Article  Google Scholar 

  19. 19.

    Graf, G.M., Porta, M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324(3), 851–895 (2013). arXiv:1207.5989

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69(2), 026119 (2004). arXiv:quant-ph/0309135

    ADS  Article  Google Scholar 

  21. 21.

    Gross, D., Nesme, V., Vogts, H., Werner, R.F.: Index theory of one dimensional quantum walks and cellular automata. Commun. Math. Phys. 310(2), 419–454 (2012). arXiv:0910.3675

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Großmann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators. Commun. Math. Phys. 343(2), 477–513 (2016). arXiv:1503.04834

    ADS  MathSciNet  Article  MATH  Google Scholar 

  23. 23.

    Halmos, P.R.: Two subspaces. Trans. Am. Math. Soc. 144, 381–389 (1969)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Hasan, M., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82(4), 3045–3067 (2010). arXiv:1002.3895

    ADS  Article  Google Scholar 

  25. 25.

    Joye, A.: Dynamical localization for d-dimensional random quantum walks. Quantum Inf. Process. 11(5), 1251–1269 (2012). arXiv:1201.4759

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Kane, C .L., Mele, E .J.: \({\mathbb{Z}} _{2}\) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95(14), 146802 (2005). arXiv:cond-mat/0506581

    ADS  Article  Google Scholar 

  27. 27.

    Kane, C.L., Mele, E.J.: Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95(22), 226801 (2005). arXiv:cond-mat/0411737

    ADS  Article  Google Scholar 

  28. 28.

    Karski, M., Förster, L., Choi, J.M., Alt, W., Widera, A., Meschede, D.: Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging. Phys. Rev. Lett. 102(5), 053001 (2009). arXiv:0807.3894

    ADS  Article  Google Scholar 

  29. 29.

    Kato, T.: Perturbation Theory of Linear Operators. Springer (1966/1984)

  30. 30.

    Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009). arXiv:0901.2686

    ADS  Article  MATH  Google Scholar 

  31. 31.

    Kitaev, A., Laumann, C.: Topological phases and quantum computation. In: Les Houches Summer School “Exact methods in low-dimensional physics and quantum computing”. Oxford University Press, (2010). arXiv:0904.2771

  32. 32.

    Kitagawa, T.: Topological phenomena in quantum walks: elementary introduction to the physics of topological phases. Quantum Inf. Process. 11(5), 1107–1148 (2012). arXiv:1112.1882

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Kitagawa, T., Rudner, M.S., Berg, E., Demler, E.: Exploring topological phases with quantum walks. Phys. Rev. A 82(3), 033429 (2010). arXiv:1003.1729

    ADS  Article  Google Scholar 

  34. 34.

    Last, Y.: Quantum dynamics and decompositions of singular continuous spectra. J. Funct. Anal. 142(2), 406–445 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Nagy, B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic Analysis of Operators on Hilbert Space. Springer, Berlin (2010)

    Google Scholar 

  36. 36.

    Prodan, E., Schulz-Baldes, H.: Bulk and boundary invariants for complex topological insulators: from K-theory to physics. Mathematical Physics Studies. Springer (2016). arXiv:1510.08744

  37. 37.

    Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057 (2011). arXiv:1008.2026

    ADS  Article  Google Scholar 

  38. 38.

    Raeburn, I., Sinclair, A.M.: The C*-algebra generated by two projections. Math. Scand. 65(2), 278–290 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Raggio, G.A., Werner, R.F.: Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta 62(8), 980–1003 (1989)

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 4. Academic Press, Cambridge (1978)

    Google Scholar 

  41. 41.

    Roe, J.: Lectures on Coarse Geometry. AMS (2008)

  42. 42.

    Ryu, S., Schnyder, A.P., Furusaki, A., Ludwig, A.W.: Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12(6), 065010 (2010). arXiv:0912.2157

    ADS  Article  Google Scholar 

  43. 43.

    Schnyder, A., Ryu, S., Furusaki, A., Ludwig, A.: Classification of topological insulators and superconductors. AIP Conf. Proc. 1134, 10–21 (2009). arXiv:0905.2029

    ADS  Article  MATH  Google Scholar 

  44. 44.

    Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104(5), 050502 (2010). arXiv:0910.2197

    ADS  Article  Google Scholar 

  45. 45.

    Schuch, N., Pérez-García, D., Cirac, I.: Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84(16), 165139 (2011). arXiv:1010.3732

    ADS  Article  Google Scholar 

  46. 46.

    Schulz-Baldes, H.: \(\mathbb{Z}_2\)-indices and factorization properties of odd symmetric Fredholm operators. Doc. Math. 20, 1481–1500 (2015). arXiv:1311.0379

    MathSciNet  MATH  Google Scholar 

  47. 47.

    Schulz-Baldes, H.: Topological insulators from the perspective of non-commutative geometry and index theory. Jahresber. Deutsch. Math.-Verein 118(4), 247–273 (2016). arXiv:1607.04013

    MathSciNet  Article  MATH  Google Scholar 

  48. 48.

    Simon, B., Taylor, M.: Harmonic analysis on SL(2,\(\mathbb{R}\)) and smoothness of the density of states in the one-dimensional Anderson model. Commun. Math. Phys. 101(1), 1–19 (1985)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. 49.

    Stahl, C.: Interactive Mathematica notebook at http://qig.itp.uni-hannover.de/bulkedge

  50. 50.

    Tarasinski, B., Asbóth, J.K., Dahlhaus, J.P.: Scattering theory of topological phases in discrete-time quantum walks. Phys. Rev. A 89(4), 042327 (2014). arXiv:1401.2673

    ADS  Article  Google Scholar 

  51. 51.

    Thiang, G.C.: On the K-theoretic classification of topological phases of matter. Ann. Inst. H. Poincaré Phys. Théor. 17(4), 757–794 (2016). arXiv:1406.7366

    ADS  MathSciNet  Article  MATH  Google Scholar 

  52. 52.

    von Neumann, J.: Allgemeine Eigenwerttheorie Hermitischer Funktionaloperatoren. Math. Ann. 102(1), 49–131 (1929)

    Article  MATH  Google Scholar 

  53. 53.

    Wigner, E.P.: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, Cambridge (1959)

    Google Scholar 

  54. 54.

    Zumino, B.: Normal forms of complex matrices. J. Math. Phys. 3(5), 1055–1057 (1962)

    ADS  MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. H. Werner.

Additional information

Communicated by Jean Bellissard.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cedzich, C., Geib, T., Grünbaum, F.A. et al. The Topological Classification of One-Dimensional Symmetric Quantum Walks. Ann. Henri Poincaré 19, 325–383 (2018). https://doi.org/10.1007/s00023-017-0630-x

Download citation