Abstract
We give a topological classification of quantum walks on an infinite 1D lattice, which obey one of the discrete symmetry groups of the tenfold way, have a gap around some eigenvalues at symmetry protected points, and satisfy a mild locality condition. No translation invariance is assumed. The classification is parameterized by three indices, taking values in a group, which is either trivial, the group of integers, or the group of integers modulo 2, depending on the type of symmetry. The classification is complete in the sense that two walks have the same indices if and only if they can be connected by a norm-continuous path along which all the mentioned properties remain valid. Of the three indices, two are related to the asymptotic behavior far to the right and far to the left, respectively. These are also stable under compact perturbations. The third index is sensitive to those compact perturbations which cannot be contracted to a trivial one. The results apply to the Hamiltonian case as well. In this case, all compact perturbations can be contracted, so the third index is not defined. Our classification extends the one known in the translation- invariant case, where the asymptotic right and left indices add up to zero, and the third one vanishes, leaving effectively only one independent index. When two translation-invariant bulks with distinct indices are joined, the left and right asymptotic indices of the joined walk are thereby fixed, and there must be eigenvalues at 1 or \(-\,1\) (bulk-boundary correspondence). Their location is governed by the third index. We also discuss how the theory applies to finite lattices, with suitable homogeneity assumptions.
This is a preview of subscription content, access via your institution.
References
- 1.
Ahlbrecht, A., Scholz, V.B., Werner, A.H.: Disordered quantum walks in one lattice dimension. J. Math. Phys. 52(10), 102201 (2011). arXiv:1101.2298
- 2.
Ahlbrecht, A., Vogts, H., Werner, A.H., Werner, R.F.: Asymptotic evolution of quantum walks with random coin. J. Math. Phys. 52(4), 042201 (2011). arXiv:1009.2019
- 3.
Altland, A., Zirnbauer, M .R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55(2), 1142–1161 (1997)
- 4.
Andruchow, E.: Pairs of projections: geodesics, Fredholm and compact pairs. Complex Anal. Oper. Theory 8(7), 1435–1453 (2014)
- 5.
Asbóth, J.K.: Symmetries, topological phases, and bound states in the one-dimensional quantum walk. Phys. Rev. B 86(19), 195414 (2012). arXiv:1208.2143
- 6.
Asbóth, J.K., Obuse, H.: Bulk-boundary correspondence for chiral symmetric quantum walks. Phys. Rev. B 88(12), 121406 (2013). arXiv:1303.1199
- 7.
Avron, J., Seiler, R., Simon, B.: The index of a pair of projections. J. Funct. Anal. 120(1), 220–237 (1994)
- 8.
Barkhofen, S., Nitsche, T., Elster, F., Lorz, L., Gabris, A., Jex, I., Silberhorn, C.: Measuring topological invariants and protected bound states in disordered discrete time quantum walks. (2016). arXiv:1606.00299
- 9.
Brown, L.G., Douglas, R.G., Fillmore, P.A.: Unitary equivalence modulo the compact operators and extensions of C*-algebras. In Proceedings: Dalhousie University, Halifax, pp. 58–128. Springer (1973)
- 10.
Carpentier, D., Delplace, P., Fruchart, M., Gawędzki, K.: Topological index for periodically driven time-reversal invariant 2D systems. Phys. Rev. Lett. 114(10), 106806 (2015). arXiv:1407.7747
- 11.
Carpentier, D., Delplace, P., Fruchart, M., Gawędzki, K., Tauber, C.: Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals. Nucl. Phys. B 896, 779–834 (2015). arXiv:1503.04157
- 12.
Cedzich, C., Grünbaum, F .A., Stahl, C., Werner, A .H., Werner, R .F.: Bulk-edge correspondence of one-dimensional quantum walks. J. Phys. A Math. Theor. 49(21), 21LT01 (2016). arXiv:1502.02592
- 13.
Cedzich, C., Grünbaum, F.A., Geib, T., Stahl, C., Velázquez, L., Werner, A.H., Werner, R.F.: Complete homotopy invariants for translation invariant symmetric quantum walks on a chain. In preparation
- 14.
Cedzich, C., Grünbaum, F.A., Velázquez, L., Werner, A.H., Werner, R.F.: A quantum dynamical approach to matrix Khrushchev’s formulas. Commun. Pure Appl. Math. 69(5), 909–957 (2016). arXiv:1405.0985
- 15.
Cedzich, C., Rybár, T., Werner, A.H., Alberti, A., Genske, M., Werner, R.F.: Propagation of quantum walks in electric fields. Phys. Rev. Lett. 111(16), 160601 (2013). arXiv:1302.2081
- 16.
Chen, X., Gu, Z.-C., Wen, X.-G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83(3), 035107 (2011). arXiv:1008.3745
- 17.
Stahl, C.: Interactive tool at https://qig.itp.uni-hannover.de/bulkedge/sse
- 18.
Genske, M., Alt, W., Steffen, A., Werner, A.H., Werner, R.F., Meschede, D., Alberti, A.: Electric quantum walks with individual atoms. Phys. Rev. Lett. 110(19), 190601 (2013). arXiv:1302.2094
- 19.
Graf, G.M., Porta, M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324(3), 851–895 (2013). arXiv:1207.5989
- 20.
Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69(2), 026119 (2004). arXiv:quant-ph/0309135
- 21.
Gross, D., Nesme, V., Vogts, H., Werner, R.F.: Index theory of one dimensional quantum walks and cellular automata. Commun. Math. Phys. 310(2), 419–454 (2012). arXiv:0910.3675
- 22.
Großmann, J., Schulz-Baldes, H.: Index pairings in presence of symmetries with applications to topological insulators. Commun. Math. Phys. 343(2), 477–513 (2016). arXiv:1503.04834
- 23.
Halmos, P.R.: Two subspaces. Trans. Am. Math. Soc. 144, 381–389 (1969)
- 24.
Hasan, M., Kane, C.L.: Colloquium: topological insulators. Rev. Mod. Phys. 82(4), 3045–3067 (2010). arXiv:1002.3895
- 25.
Joye, A.: Dynamical localization for d-dimensional random quantum walks. Quantum Inf. Process. 11(5), 1251–1269 (2012). arXiv:1201.4759
- 26.
Kane, C .L., Mele, E .J.: \({\mathbb{Z}} _{2}\) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95(14), 146802 (2005). arXiv:cond-mat/0506581
- 27.
Kane, C.L., Mele, E.J.: Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95(22), 226801 (2005). arXiv:cond-mat/0411737
- 28.
Karski, M., Förster, L., Choi, J.M., Alt, W., Widera, A., Meschede, D.: Nearest-neighbor detection of atoms in a 1D optical lattice by fluorescence imaging. Phys. Rev. Lett. 102(5), 053001 (2009). arXiv:0807.3894
- 29.
Kato, T.: Perturbation Theory of Linear Operators. Springer (1966/1984)
- 30.
Kitaev, A.: Periodic table for topological insulators and superconductors. AIP Conf. Proc. 1134, 22–30 (2009). arXiv:0901.2686
- 31.
Kitaev, A., Laumann, C.: Topological phases and quantum computation. In: Les Houches Summer School “Exact methods in low-dimensional physics and quantum computing”. Oxford University Press, (2010). arXiv:0904.2771
- 32.
Kitagawa, T.: Topological phenomena in quantum walks: elementary introduction to the physics of topological phases. Quantum Inf. Process. 11(5), 1107–1148 (2012). arXiv:1112.1882
- 33.
Kitagawa, T., Rudner, M.S., Berg, E., Demler, E.: Exploring topological phases with quantum walks. Phys. Rev. A 82(3), 033429 (2010). arXiv:1003.1729
- 34.
Last, Y.: Quantum dynamics and decompositions of singular continuous spectra. J. Funct. Anal. 142(2), 406–445 (1996)
- 35.
Nagy, B., Foias, C., Bercovici, H., Kérchy, L.: Harmonic Analysis of Operators on Hilbert Space. Springer, Berlin (2010)
- 36.
Prodan, E., Schulz-Baldes, H.: Bulk and boundary invariants for complex topological insulators: from K-theory to physics. Mathematical Physics Studies. Springer (2016). arXiv:1510.08744
- 37.
Qi, X.-L., Zhang, S.-C.: Topological insulators and superconductors. Rev. Mod. Phys. 83(4), 1057 (2011). arXiv:1008.2026
- 38.
Raeburn, I., Sinclair, A.M.: The C*-algebra generated by two projections. Math. Scand. 65(2), 278–290 (1989)
- 39.
Raggio, G.A., Werner, R.F.: Quantum statistical mechanics of general mean field systems. Helv. Phys. Acta 62(8), 980–1003 (1989)
- 40.
Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 4. Academic Press, Cambridge (1978)
- 41.
Roe, J.: Lectures on Coarse Geometry. AMS (2008)
- 42.
Ryu, S., Schnyder, A.P., Furusaki, A., Ludwig, A.W.: Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J. Phys. 12(6), 065010 (2010). arXiv:0912.2157
- 43.
Schnyder, A., Ryu, S., Furusaki, A., Ludwig, A.: Classification of topological insulators and superconductors. AIP Conf. Proc. 1134, 10–21 (2009). arXiv:0905.2029
- 44.
Schreiber, A., Cassemiro, K.N., Potoček, V., Gábris, A., Mosley, P.J., Andersson, E., Jex, I., Silberhorn, C.: Photons walking the line: a quantum walk with adjustable coin operations. Phys. Rev. Lett. 104(5), 050502 (2010). arXiv:0910.2197
- 45.
Schuch, N., Pérez-García, D., Cirac, I.: Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84(16), 165139 (2011). arXiv:1010.3732
- 46.
Schulz-Baldes, H.: \(\mathbb{Z}_2\)-indices and factorization properties of odd symmetric Fredholm operators. Doc. Math. 20, 1481–1500 (2015). arXiv:1311.0379
- 47.
Schulz-Baldes, H.: Topological insulators from the perspective of non-commutative geometry and index theory. Jahresber. Deutsch. Math.-Verein 118(4), 247–273 (2016). arXiv:1607.04013
- 48.
Simon, B., Taylor, M.: Harmonic analysis on SL(2,\(\mathbb{R}\)) and smoothness of the density of states in the one-dimensional Anderson model. Commun. Math. Phys. 101(1), 1–19 (1985)
- 49.
Stahl, C.: Interactive Mathematica notebook at http://qig.itp.uni-hannover.de/bulkedge
- 50.
Tarasinski, B., Asbóth, J.K., Dahlhaus, J.P.: Scattering theory of topological phases in discrete-time quantum walks. Phys. Rev. A 89(4), 042327 (2014). arXiv:1401.2673
- 51.
Thiang, G.C.: On the K-theoretic classification of topological phases of matter. Ann. Inst. H. Poincaré Phys. Théor. 17(4), 757–794 (2016). arXiv:1406.7366
- 52.
von Neumann, J.: Allgemeine Eigenwerttheorie Hermitischer Funktionaloperatoren. Math. Ann. 102(1), 49–131 (1929)
- 53.
Wigner, E.P.: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Academic Press, Cambridge (1959)
- 54.
Zumino, B.: Normal forms of complex matrices. J. Math. Phys. 3(5), 1055–1057 (1962)
Author information
Affiliations
Corresponding author
Additional information
Communicated by Jean Bellissard.
Rights and permissions
About this article
Cite this article
Cedzich, C., Geib, T., Grünbaum, F.A. et al. The Topological Classification of One-Dimensional Symmetric Quantum Walks. Ann. Henri Poincaré 19, 325–383 (2018). https://doi.org/10.1007/s00023-017-0630-x
Received:
Accepted:
Published:
Issue Date: