Skip to main content

On Asymptotic Expansions in Spin–Boson Models

Abstract

We consider expansions of eigenvalues and eigenvectors of models of quantum field theory. For a class of models known as generalized spin–boson model, we prove the existence of asymptotic expansions of the ground state and the ground state energy to arbitrary order. We need a mild but very natural infrared assumption, which is weaker than the assumption usually needed for other methods such as operator theoretic renormalization to be applicable. The result complements previously shown analyticity properties.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Abdesselam, A.: The ground state energy of the massless spin-boson model. Ann. Henri Poincaré 12(7), 1321–1347 (2011)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Abdesselam, A., Hasler, D.: Analyticity of the ground state energy for massless Nelson models. Commun. Math. Phys. 310(2), 511–536 (2012)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Arai, A.: A new asymptotic perturbation theory with applications to models of massless quantum fields. Ann. Henri Poincaré 15(6), 1145–1170 (2014)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Bach, V., Chen, T., Fröhlich, J., Sigal, I.M.: Smooth Feshbach map and operator-theoretic renormalization group methods. J. Funct. Anal. 203(1), 44–92 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Bach, V., Fröhlich, J., Pizzo, A.: Infrared-finite algorithms in QED: the groundstate of an atom interacting with the quantized radiation field. Commun. Math. Phys. 264(1), 145–165 (2006)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Bach, V., Fröhlich, J., Pizzo, A.: Infrared-finite algorithms in QED. II. The expansion of the groundstate of an atom interacting with the quantized radiation field. Adv. Math. 220(4), 1023–1074 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Bach, V., Fröhlich, J., Sigal, I.M.: Quantum electrodynamics of confined nonrelativistic particles. Adv. Math. 137(2), 299–395 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Bach, V., Fröhlich, J., Sigal, I.M.: Renormalization group analysis of spectral problems in quantum field theory. Adv. Math. 137(2), 205–298 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Bach, V., Fröhlich, J., Sigal, I.M.: Spectral analysis for systems of atoms and molecules coupled to the quantized radiation field. Commun. Math. Phys. 207(2), 249–290 (1999)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Barbaroux, J.-M., Chen, T., Vougalter, V., Vugalter, S.: On the ground state energy of the translation invariant Pauli–Fierz model. Proc. Am. Math. Soc. 136(3), 1057–1064 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Barbaroux, J.-M., Chen, T., Vougalter, V., Vugalter, S.: Quantitative estimates on the binding energy for hydrogen in non-relativistic QED. Ann. Henri Poincaré 11(8), 1487–1544 (2010)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Barbaroux, J.-M., Chen, T., Vugalter, S.: Binding conditions for atomic \(N\)-electron systems in non-relativistic QED. Ann. Henri Poincaré 4(6), 1101–1136 (2003)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Catto, I., Hainzl, C.: Self-energy of one electron in non-relativistic QED. J. Funct. Anal. 207(1), 68–110 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Fröhlich, J.: Existence of dressed one electron states in a class of persistent models. Fortschritte der Physik 22(3), 159–198 (1974)

    ADS  Article  Google Scholar 

  15. 15.

    Gérard, C.: On the existence of ground states for massless Pauli–Fierz Hamiltonians. Ann. Henri Poincaré 1(3), 443–459 (2000)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Griesemer, M., Hasler, D.G.: Analytic perturbation theory and renormalization analysis of matter coupled to quantized radiation. Ann. Henri Poincaré 10(3), 577–621 (2009)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Griesemer, M., Lieb, E.H., Loss, M.: Ground states in non-relativistic quantum electrodynamics. Invent. Math. 145(3), 557–595 (2001)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Hainzl, C., Seiringer, R.: Mass renormalization and energy level shift in non-relativistic QED. Adv. Theor. Math. Phys. 6(5), 847–871 (2002)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Hasler, D., Herbst, I.: Convergent expansions in non-relativistic QED: analyticity of the ground state. J. Funct. Anal. 261(11), 3119–3154 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Hasler, D., Herbst, I.: Smoothness and analyticity of perturbation expansions in QED. Adv. Math. 228(6), 3249–3299 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Hasler, D., Herbst, I.: Ground states in the spin boson model. Ann. Henri Poincaré 12(4), 621–677 (2011)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Kato, T.: Perturbation Theory for Linear Operators. Classics in Mathematics. Springer, Berlin (1995). Reprint of the 1980 edition

    Book  Google Scholar 

  23. 23.

    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London (1978)

    MATH  Google Scholar 

  24. 24.

    Spohn, H.: Ground state of a quantum particle coupled to a scalar Bose field. Lett. Math. Phys. 44(1), 9–16 (1998)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Hasler.

Additional information

Communicated by Abdelmalek Abdesselam.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bräunlich, G., Hasler, D. & Lange, M. On Asymptotic Expansions in Spin–Boson Models. Ann. Henri Poincaré 19, 515–564 (2018). https://doi.org/10.1007/s00023-017-0625-7

Download citation