Abstract
We show that non-obtuse trapezoids with identical Neumann spectra are congruent up to rigid motions of the plane. The proof is based on heat trace invariants and some new wave trace invariants associated to certain diffractive billiard trajectories. We use the method of reflections to express the Dirichlet and Neumann wave kernels in terms of the wave kernel of the double polygon. Using Hillairet’s trace formulas for isolated diffractive geodesics and one-parameter families of regular geodesics with geometrically diffractive boundaries for Euclidean surfaces with conical singularities (Hillairet in J Funct Anal 226(1):48–89, 2005), we obtain the new wave trace invariants for trapezoids. To handle the reflected term, we use another result of Hillairet (J Funct Anal 226(1):48–89, 2005), which gives a Fourier integral operator representation for the Keller and Friedlander parametrix (Keller in Proc Symp Appl Math 8:27–52, 1958; Friedlander in Math Proc Camb Philos Soc 90(2):335–341, 1981) of the wave propagator near regular diffractive geodesics. The reason we can only treat the Neumann case is that the wave trace is “more singular” for the Neumann case compared to the Dirichlet case. This is a new observation which is of independent interest.
This is a preview of subscription content, access via your institution.
References
Andersson, K.G., Melrose, R.B.: The propagation of singularities along gliding rays. Invent. Math. 41(3), 197–232 (1977)
Bérard, Pierre H.: On the wave equation on a compact Riemannian manifold without conjugate points. Math. Z. 155(3), 249–276 (1977)
van den Berg, M., Srisatkunarajah, S.: Heat equation for a region in \({ R}^2\) with a polygonal boundary. J. Lond. Math. Soc. 37(1), 119–127 (1988)
Berry, M.V., Tabor, M.: Level clustering in the regular spectrum. Proc. R. Soc. Lond. Ser. A 356(1656), 375–394 (1977)
Bogomolny, E., Pavloff, N., Schmit, C.: Diffractive corrections in the trace formula for polygonal billiards. Phys. Rev. E 61(4), 3689–3711 (2000)
Bohigas, O., Giannoni, M.-J., Schmit, C.: Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52(1), 1–4 (1984)
Buser, P.: Isospectral Riemann surfaces. Ann. Inst. Fourier (Grenoble) 36(2), 167–192 (1986). (English, with French summary)
Chapman, S.J.: Drums that sound the same. Am. Math. Mon. 102, 124–138 (1995)
Chazarain, J.: Construction de la paramétrix du problème mixte hyperbolique pour l’équation des ondes. C. R. Acad. Sci. Paris Ser. A-B 276, A1213–A1215 (1973). (French)
Chazarain, J.: Formule de Poisson pour les variétés riemanniennes. Invent. Math. 24, 65–82 (1974). (French)
Cheeger, J., Taylor, M.: On the diffraction of waves by conical singularities I. Commun. Pure Appl. Math. 35(3), 275–331 (1982)
Cheeger, J., Taylor, M.: On the diffraction of waves by conical singularities II. Commun. Pure Appl. Math. 35(4), 487–529 (1982)
Colin Verdière, Y.: Spectre du laplacien et longueurs des géodésiques périodiques I, II. Compos. Math. 27, 159–184 (1973)
Colin de Verdière, Y.: Sur les longueurs des trajectoires périodiques d’un billard. In: South Rhone Seminar on Geometry, III (Lyon, 1983). Travaux en Cours, Hermann, Paris, pp. 122–139 (1984)
Datchev, K., Hezari, H.: Inverse problems in spectral geometry. Inverse problems and applications: inside out. II. Math. Sci. Res. Inst. Publ. 60, 455–485 (2013). Cambridge Univ. Press, Cambridge
De Simoi, J., Kaloshin, V., Wei, Q.: Dynamical spectral rigidity among \({\mathbb{Z}}_2\)-symmetric strictly convex domains close to a circle, with a joint appendix by H. Hezari. Ann. Math. (2017). arXiv:1606.00230
Duistermaat, J.J., Guillemin, V.W.: The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math. 29(1), 39–79 (1975)
Duistermaat, J.J.: Fourier integral operators. In: Modern Birkhäuser Classics. Reprint of the 1996 edition [MR1362544], based on the original lecture notes published in 1973 [MR0451313], Springer, New York (2011)
Durso, C.: On the inverse spectral problem for polygonal domains. ProQuest LLC, Ann Arbor, MI, (1988). Thesis (Ph.D.)–Massachusetts Institute of Technology
Ford, A., Hassell, A., Hillairet, L.: Wave propagation on Euclidean surfaces with conical singularities. I: geometric diffraction. J. Spectr. Theory (2015). Arxiv:1505.01043
Ford, A., Wunsch, J.: The diffractive wave trace on manifolds with conic singularities. Adv. Math. 304, 1330–1385 (2017)
Friedlander, F.G.: Multivalued solutions of the wave equation. Math. Proc. Camb. Philos. Soc. 90(2), 335–341 (1981)
Friedlander, F.G.: On the wave equation in plane regions with polygonal boundary. Adv. Microlocal Anal. 135–150 (1986)
Fursaev, D.V.: The heat-kernel expansion on a cone and quantum fields near cosmic strings. Class. Quantum Gravity 11(6), 1431–1443 (1994)
Gordon, C., Webb, D.L., Wolpert, S.: One cannot hear the shape of a drum. Bull. Am. Math. Soc. (N.S.) 27(1), 134–138 (1992)
Gordon, C., Webb, D.L., Wolpert, S.: Isospectral plane domains and surfaces via Riemannian orbifolds. Invent. Math. 110(1), 1–22 (1992)
Grieser, D., Maronna, S.: Hearing the shape of a triangle. Not. Am. Math. Soc. 60(11), 1440–1447 (2013)
Guillemin, V., Melrose, R.: The Poisson summation formula for manifolds with boundary. Adv. Math. 32(3), 204–232 (1979)
Hezari, H., Zelditch, S.: \(C^\infty \) spectral rigidity of the ellipse. Anal. PDE 5(5), 1105–1132 (2012)
Hillairet, L.: Formule de trace sur une surface euclidienne à singularités coniques. C. R. Math. Acad. Sci. Paris 335(12), 1047–1052 (2002). (French, with English and French summaries)
Hillairet, L.: Contribution of periodic diffractive geodesics. J. Funct. Anal. 226(1), 48–89 (2005)
Hillairet, L.: Diffractive geodesics of a polygonal billiard. Proc. Edinb. Math. Soc. 49(1), 71–86 (2006)
Kac, M.: Can one hear the shape of a drum? Am. Math. Mon. 73(4), 1–23 (1966)
Hörmander, L.: The analysis of linear partial differential operators. I. In: Distribution Theory and Fourier Analysis MR1065136, 2nd edn. Springer, Berlin (1990)
Hörmander, L.: The analysis of linear partial differential operators. III. Classics in mathematics. In: Pseudo-Differential Operators, Springer, Berlin (2007) (Reprint of the 1994 edition)
Hörmander, L.: The analysis of linear partial differential operators. IV. Classics in mathematics. In: Fourier Integral Operators, Springer, Berlin (2009) (Reprint of the 1994 edition)
Hörmander, L.: Fourier integral operators. I. Acta Math. 127(1–2), 79–183 (1971)
Ivrii, V.: Microlocal analysis and precise spectral asymptotics. In: Springer Monographs in Mathematics MR1631419, Springer, Berlin (1998)
Keller, J.B.: A geometrical theory of diffraction. Calculus of variations and its applications. Proc. Symp. Appl. Math. 8, 27–52 (1958)
Kokotov, A.: On the spectral theory of the Laplacian on compact polyhedral surfaces of arbitrary genus. Comput. Approach Riemann Surf. Lect. Notes Math. 2013, 227–253 (2011)
Lu, Z., Rowlett, J.: The sound of symmetry. Am. Math. Mon. 122(9), 815–835 (2015)
Lu, Z., Rowlett, J.: One can hear the corners of a drum. Bull. Lond. Math. Soc. 48(1), 85–93 (2016)
Netrusov, Y., Safarov, Y.: Weyl asymptotic formula for the Laplacian on domains with rough boundaries. Commun. Math. Phys. 253(2), 481–509 (2005). https://doi.org/10.1007/s00220-004-1158-8. MR2140257
McKean Jr., H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Differ. Geometry 1(1), 43–69 (1967)
Melrose, R.: The inverse spectral problem for planar domains. In: Instructional Workshop on Analysis and Geometry, Part I (Canberra, 1995). Proceedings of Centre for Mathematics and Its Applications, Australian National University, vol. 34, Canberra, pp. 137–160 (1996)
Melrose, R.B., Uhlmann, G.A.: Lagrangian intersection and the Cauchy problem. Commun. Pure Appl. Math. 32(4), 483–519 (1979). https://doi.org/10.1002/cpa.3160320403. MR528633
Melrose, R., Wunsch, J.: Propagation of singularities for the wave equation on conic manifolds. Invent. Math. 156(2), 235–299 (2004)
Milnor, J.: Eigenvalues of the Laplace operator on certain manifolds. Proc. Nat. Adad. Sci. USA 51(4), 542 (1964)
Pavloff, N., Schmit, C.: Diffractive orbits in quantum billiards. Phys. Rev. Let. 75(1), 61–64 (1995)
Petkov, V.M., Stoyanov, L.N.: Geometry of reflecting rays and inverse spectral problems. In: Pure and Applied Mathematics MR1172998, Wiley, New York (1992)
Popov, G., Topalov, P.: From K.A.M. tori to isospectral invariants and spectral rigidity of billiard tables. arXiv: 1602.03155 (2016)
Sommerfeld, A.: Mathematische theorie der diffraction. Math. Ann. 47(2–3), 317–374 (1896)
Shubin, M.A.: Pseudodifferential operators and spectral theory, 2nd edn. Springer, Berlin (2001) (Translated from the 1978 Russian original by Stig I. Andersson)
Sunada, T.: Riemannian coverings and isospectral manifolds. Ann. Math. 121(1), 169–186 (1985)
Taylor, M. E.: Pseudodifferential operators and nonlinear PDE. In: Progress in Mathematics, vol. 100, Birkhäuser Boston, Inc., Boston (1991)
Vignéras, M.-F.: Exemples de sous-groupes discrets non conjugués de \({\rm PSL}(2,{\bf R})\) qui ont même fonction zéta de Selberg. C. R. Acad. Sci. Paris Ser. A-B 287(2), A47–A49 (1978). (French, with English summary)
Watanabe, K.: Plane domains which are spectrally determined. Ann. Global Anal. Geom. 18(5), 447–475 (2000)
Witt, E.: Eine Identität zwischen Modulformen zweiten Grades. Abh. Math. Sem. Univ. Hambg. 14, 323–337 (1941)
Wunsch, J.: A Poisson relation for conic manifolds. Math. Res. Lett. 9(5–6), 813–828 (2002)
Zelditch, S.: Survey on the inverse spectral problem. ICCM Not. 2(2), 1–20 (2014). https://doi.org/10.4310/ICCM.2014.v2.n2.a1. MR3314780
Zelditch, S.: Inverse spectral problem for analytic domains. II. Z2-symmetric domains. Ann. Math 170(1), 205–269 (2009)
Zelditch, S.: Spectral determination of analytic bi-axisymmetric plane domains. Geom. Funct. Anal. 10(3), 628–677 (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Stephane Nonnenmacher.
Rights and permissions
About this article
Cite this article
Hezari, H., Lu, Z. & Rowlett, J. The Neumann Isospectral Problem for Trapezoids. Ann. Henri Poincaré 18, 3759–3792 (2017). https://doi.org/10.1007/s00023-017-0617-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-017-0617-7