Skip to main content
Log in

Fock Representation of Gravitational Boundary Modes and the Discreteness of the Area Spectrum

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript


In this article, we study the quantum theory of gravitational boundary modes on a null surface. These boundary modes are given by a spinor and a spinor-valued two-form, which enter the gravitational boundary term for self-dual gravity. Using a Fock representation, we quantise the boundary fields and show that the area of a two-dimensional cross section turns into the difference of two number operators. The spectrum is discrete, and it agrees with the one known from loop quantum gravity with the correct dependence on the Barbero–Immirzi parameter. No discrete structures (such as spin network functions, or triangulations of space) are ever required—the entire derivation happens at the level of the continuum theory. In addition, the area spectrum is manifestly Lorentz invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Ashtekar, A., Baez, J.C., Krasnov, K.: Quantum geometry of isolated horizons and black hole entropy. Adv. Theor. Math. Phys. 4, 1–94 (2000). arXiv:gr-qc/0005126

  2. Engle, J., Noui, K., Perez, A., Pranzetti, D.: Black hole entropy from the \(SU(2)\)-invariant formulation of type I isolated horizons. Phys. Rev. D 82(4), 044050 (2010). arXiv:1006.0634

    Article  ADS  Google Scholar 

  3. Sahlmann, H.: Black hole horizons from within loop quantum gravity. Phys. Rev. D 84, 044049 (2011). arXiv:1104.4691

    Article  ADS  Google Scholar 

  4. Wieland, W.: Discrete gravity as a topological field theory with light-like curvature defects. JHEP 5, 1–43 (2017). arXiv:1611.02784

  5. Wieland, W.: New boundary variables for classical and quantum gravity on a null surface. arXiv:1704.07391

  6. Capovilla, R., Jacobson, T., Dell, J., Mason, L.: Selfdual two forms and gravity. Class. Quantum Gravity 8, 41–57 (1991)

    Article  ADS  MATH  Google Scholar 

  7. Ashtekar, A., Lewandowski, J.: Quantum theory of geometry: I. Area operators. Class. Quantum Gravity 14, A55–A82 (1997). arXiv:gr-qc/9602046

  8. Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442(3), 593–619 (1995). arXiv:gr-qc/9411005

  9. Wieland, W.: Quasi-local gravitational angular momentum and centre of mass from generalised Witten equations. Gen. Relativ. Gravit. 49(2), 38 (2017). arXiv:1604.07428

  10. Freidel, L., Speziale, S.: Twistors to twisted geometries. Phys. Rev. D 82, 084041 (2010). arXiv:1006.0199

    Article  ADS  Google Scholar 

  11. Wieland, W.: Twistorial phase space for complex Ashtekar variables. Class. Quantum Gravity 29, 045007 (2011). arXiv:1107.5002

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Bianchi, E., Guglielmon, J., Hackl, L., Yokomizo, N.: Loop expansion and the bosonic representation of loop quantum gravity. Phys. Rev. D 94(8), 086009 (2016). arXiv:1609.02219

  13. Donnelly, W., Freidel, L.: Local subsystems in gauge theory and gravity. JHEP 9, 102 (2016). arXiv:1601.04744

  14. Freidel, L., Perez, A.: Quantum gravity at the corner. arXiv:1507.02573

  15. Geiller, M.: Edge modes and corner ambiguities in 3d Chern–Simons theory and gravity. arXiv:1703.04748

  16. Dittrich, B., Geiller, M.: A new vacuum for loop quantum gravity. Class. Quantum Gravity 32(11), 112001 (2015). arXiv:1401.6441

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Bahr, B., Dittrich, B., Geiller, M.: A new realization of quantum geometry. arXiv:1506.08571

  18. Rovelli, C.: Partial observables. Phys. Rev. D 65, 124013 (2002). arXiv:gr-qc/0110035v3

    Article  ADS  MathSciNet  Google Scholar 

  19. Engle, J., Pereira, R., Rovelli, C.: Flipped spinfoam vertex and loop gravity. Nucl. Phys. B 798, 251–290 (2008). arXiv:0708.1236v1

  20. Engle, J., Pereira, R., Rovelli, C.: The loop-quantum-gravity vertex-amplitude. Phys. Rev. Lett. 99, 161301 (2007). arXiv:0705.2388

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Ashtekar, A., Lewandowski, J.: Representation theory of analytic holonomy C* algebras. In: Baez, J. (ed.) Knots and Quantum Gravity. Oxford University Press (1993). arXiv:gr-qc/9311010

  22. Ashtekar, A., Lewandowski, J.: Projective techniques and functional integration for gauge theories. J. Math. Phys. 36, 2170–2191 (1995). arXiv:gr-qc/9411046

  23. Lewandowski, J., Okolow, A., Sahlmann, H., Thiemann, T.: Uniqueness of diffeomorphism invariant states on holonomy-flux algebras. Commun. Math. Phys. 267, 703–733 (2006). arXiv:gr-qc/0504147

  24. Pithis, A.G.A., Ruiz Euler, H.-C.: Anyonic statistics and large horizon diffeomorphisms for loop quantum gravity black holes. Phys. Rev. D 91, 064053 (2015). arXiv:1402.2274

    Article  ADS  MathSciNet  Google Scholar 

  25. Rühl, W.: The Lorentz Group and Harmonic Analysis. W. A. Benjamin, New York (1970)

    MATH  Google Scholar 

  26. Bekenstein, J.D., Mukhanov, V.F.: Spectroscopy of the quantum black hole. Phys. Lett. B 360, 7–12 (1995). arXiv:gr-qc/9505012

  27. Amelino-Camelia, G., Gubitosi, G., Mercati, F.: Discreteness of area in noncommutative space. Phys. Lett. B 676, 180–183 (2009). arXiv:0812.3663

    Article  ADS  MathSciNet  Google Scholar 

  28. Chamseddine, A.H., Connes, A., Mukhanov, V.: Quanta of geometry: noncommutative aspects. Phys. Rev. Lett. 114(9), 091302 (2015). arXiv:1409.2471

    Article  ADS  MathSciNet  Google Scholar 

  29. Nicolai, H., Peeters, K., Zamaklar, M.: Loop quantum gravity: an outside view. Class. Quantum Gravity 22(10), R193–R347 (2005). arXiv:hep-th/0501114

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Wolfgang Wieland.

Additional information

Communicated by Carlo Rovelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wieland, W. Fock Representation of Gravitational Boundary Modes and the Discreteness of the Area Spectrum. Ann. Henri Poincaré 18, 3695–3717 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: