Abstract
We formulate an algebraic criterion for the presence of global anomalies on globally hyperbolic space-times in the framework of locally covariant field theory. We discuss some consequences and check that it reproduces the well-known global SU(2) anomaly in four space-time dimensions.
Similar content being viewed by others
References
Witten, E.: An SU(2) anomaly. Phys. Lett. B 117, 324 (1982)
Nelson, P.C., Alvarez-Gaume, L.: Hamiltonian interpretation of anomalies. Commun. Math. Phys. 99, 103 (1985)
Jackiw, R.: Topological investigations of quantized gauge theories. In: Stora, R., DeWitt, B. (eds.) Relativity, Groups and Topology II. North-Holland, Amsterdam (1986)
Ruijsenaars, S.N.M.: Charged particles in external fields. 1. Classical theory. J. Math. Phys. 18, 720 (1977)
Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a New paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003). [arXiv:math-ph/0112041]
Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 223, 289 (2001). [arXiv:gr-qc/0103074]
Zahn, J.: The renormalized locally covariant Dirac field. Rev. Math. Phys. 26(1), 1330012 (2014). [arXiv:1210.4031 [math-ph]]
Fewster, C.J., Verch, R.: Dynamical locality and covariance: what makes a physical theory the same in all spacetimes? Ann. Henri Poincaré 13, 1613 (2012). [arXiv:1106.4785 [math-ph]]
Hollands, S., Wald, R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005). [arXiv:gr-qc/0404074]
Zahn, J.: Locally covariant charged fields and background independence. Rev. Math. Phys. 27(07), 1550017 (2015). [arXiv:1311.7661 [math-ph]]
Witten, E.: Global aspects of current algebra. Nucl. Phys. B 223, 422 (1983)
Elitzur, S., Nair, V.P.: Nonperturbative anomalies in higher dimensions. Nucl. Phys. B 243, 205 (1984)
Sanders, K.: Essential self-adjointness of Wick squares in quasi-free Hadamard representations on curved spacetimes. J. Math. Phys. 53, 042502 (2012). [arXiv:1010.3978 [math-ph]]
Fewster, C.J.: Endomorphisms and automorphisms of locally covariant quantum field theories. Rev. Math. Phys. 25, 1350008 (2013). [arXiv:1201.3295 [math-ph]]
Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields, 3rd edn. Wiley, New York (1980)
Scharf, G.: Finite Quantum Electrodynamics, 2nd edn. Springer, Berlin (1995)
Scharf, G., Wreszinski, W.F.: The causal phase in quantum electrodynamics. Nuovo Cim. A 93, 1 (1986)
Gracia-Bondia, J.M.: The phase of the scattering matrix. Phys. Lett. B 482, 315 (2000). [arXiv:hep-th/0003141]
Alvarez-Gaume, L., Witten, E.: Gravitational anomalies. Nucl. Phys. B 234, 269 (1984)
Elitzur, S., Frishman, Y., Rabinovici, E., Schwimmer, A.: Origins of global anomalies in quantum mechanics. Nucl. Phys. B 273, 93 (1986)
Wess, J., Zumino, B.: Consequences of anomalous Ward identities. Phys. Lett. B 37, 95 (1971)
Bardeen, W.A., Zumino, B.: Consistent and covariant anomalies in gauge and gravitational theories. Nucl. Phys. B 244, 421 (1984)
Zahn, J.: Locally covariant chiral fermions and anomalies. Nucl. Phys. B 890, 1 (2014). [arXiv:1407.1994 [hep-th]]
Acknowledgements
We would like to thank Dirk-André Deckert, Chris Fewster, Stefan Hollands and Ko Sanders for helpful discussions. A.S. was supported by a Research Fellowship of the Deutsche Forschungsgemeinschaft (DFG, Germany). A large part of the work presented here was done at Heriot-Watt University Edinburgh. J.Z. would like to thank the Department of Mathematics for the kind hospitality and the COST action “Quantum structure of spacetime(QSPACE)” for funding the visit through the “short term scientific missions” program.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Karl Henning Rehren.
Rights and permissions
About this article
Cite this article
Schenkel, A., Zahn, J. Global Anomalies on Lorentzian Space-Times. Ann. Henri Poincaré 18, 2693–2714 (2017). https://doi.org/10.1007/s00023-017-0590-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-017-0590-1