Skip to main content
Log in

Global Anomalies on Lorentzian Space-Times

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We formulate an algebraic criterion for the presence of global anomalies on globally hyperbolic space-times in the framework of locally covariant field theory. We discuss some consequences and check that it reproduces the well-known global SU(2) anomaly in four space-time dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witten, E.: An SU(2) anomaly. Phys. Lett. B 117, 324 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  2. Nelson, P.C., Alvarez-Gaume, L.: Hamiltonian interpretation of anomalies. Commun. Math. Phys. 99, 103 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Jackiw, R.: Topological investigations of quantized gauge theories. In: Stora, R., DeWitt, B. (eds.) Relativity, Groups and Topology II. North-Holland, Amsterdam (1986)

  4. Ruijsenaars, S.N.M.: Charged particles in external fields. 1. Classical theory. J. Math. Phys. 18, 720 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  5. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: a New paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003). [arXiv:math-ph/0112041]

  6. Hollands, S., Wald, R.M.: Local Wick polynomials and time ordered products of quantum fields in curved space-time. Commun. Math. Phys. 223, 289 (2001). [arXiv:gr-qc/0103074]

  7. Zahn, J.: The renormalized locally covariant Dirac field. Rev. Math. Phys. 26(1), 1330012 (2014). [arXiv:1210.4031 [math-ph]]

    Article  MathSciNet  MATH  Google Scholar 

  8. Fewster, C.J., Verch, R.: Dynamical locality and covariance: what makes a physical theory the same in all spacetimes? Ann. Henri Poincaré 13, 1613 (2012). [arXiv:1106.4785 [math-ph]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hollands, S., Wald, R.M.: Conservation of the stress tensor in interacting quantum field theory in curved spacetimes. Rev. Math. Phys. 17, 227 (2005). [arXiv:gr-qc/0404074]

    Article  MathSciNet  MATH  Google Scholar 

  10. Zahn, J.: Locally covariant charged fields and background independence. Rev. Math. Phys. 27(07), 1550017 (2015). [arXiv:1311.7661 [math-ph]]

    Article  MathSciNet  MATH  Google Scholar 

  11. Witten, E.: Global aspects of current algebra. Nucl. Phys. B 223, 422 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  12. Elitzur, S., Nair, V.P.: Nonperturbative anomalies in higher dimensions. Nucl. Phys. B 243, 205 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  13. Sanders, K.: Essential self-adjointness of Wick squares in quasi-free Hadamard representations on curved spacetimes. J. Math. Phys. 53, 042502 (2012). [arXiv:1010.3978 [math-ph]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fewster, C.J.: Endomorphisms and automorphisms of locally covariant quantum field theories. Rev. Math. Phys. 25, 1350008 (2013). [arXiv:1201.3295 [math-ph]]

    Article  MathSciNet  MATH  Google Scholar 

  15. Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields, 3rd edn. Wiley, New York (1980)

    Google Scholar 

  16. Scharf, G.: Finite Quantum Electrodynamics, 2nd edn. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  17. Scharf, G., Wreszinski, W.F.: The causal phase in quantum electrodynamics. Nuovo Cim. A 93, 1 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  18. Gracia-Bondia, J.M.: The phase of the scattering matrix. Phys. Lett. B 482, 315 (2000). [arXiv:hep-th/0003141]

  19. Alvarez-Gaume, L., Witten, E.: Gravitational anomalies. Nucl. Phys. B 234, 269 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  20. Elitzur, S., Frishman, Y., Rabinovici, E., Schwimmer, A.: Origins of global anomalies in quantum mechanics. Nucl. Phys. B 273, 93 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  21. Wess, J., Zumino, B.: Consequences of anomalous Ward identities. Phys. Lett. B 37, 95 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  22. Bardeen, W.A., Zumino, B.: Consistent and covariant anomalies in gauge and gravitational theories. Nucl. Phys. B 244, 421 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zahn, J.: Locally covariant chiral fermions and anomalies. Nucl. Phys. B 890, 1 (2014). [arXiv:1407.1994 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Dirk-André Deckert, Chris Fewster, Stefan Hollands and Ko Sanders for helpful discussions. A.S. was supported by a Research Fellowship of the Deutsche Forschungsgemeinschaft (DFG, Germany). A large part of the work presented here was done at Heriot-Watt University Edinburgh. J.Z. would like to thank the Department of Mathematics for the kind hospitality and the COST action “Quantum structure of spacetime(QSPACE)” for funding the visit through the “short term scientific missions” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Zahn.

Additional information

Communicated by Karl Henning Rehren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schenkel, A., Zahn, J. Global Anomalies on Lorentzian Space-Times. Ann. Henri Poincaré 18, 2693–2714 (2017). https://doi.org/10.1007/s00023-017-0590-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0590-1

Navigation