Skip to main content

Causality for Nonlocal Phenomena

Abstract

Drawing from the theory of optimal transport we propose a rigorous notion of a causal relation for Borel probability measures on a given spacetime. To prepare the ground, we explore the borderland between Lorentzian geometry, topology and measure theory. We provide various characterisations of the proposed causal relation, which turn out to be equivalent if the underlying spacetime has a sufficiently robust causal structure. We also present the notion of the ‘Lorentz–Wasserstein distance’ and study its basic properties. Finally, we outline the possible applications of the developed formalism in both classical and quantum physics.

References

  1. Abdo, A., et al.: Testing Einstein’s special relativity with Fermi’s short hard \(\gamma \)-ray burst GRB090510. Nature 462, 331 (2009)

    ADS  Article  Google Scholar 

  2. Aichmann, H., Nimtz, G.: On the traversal time of barriers. Found. Phys. 44(6), 678–688 (2014)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. Al-Hashimi, M., Wiese, U.-J.: Minimal position-velocity uncertainty wave packets in relativistic and non-relativistic quantum mechanics. Ann. Phys. 324(12), 2599–2621 (2009)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. Amelino-Camelia, G., Ellis, J., Mavromatos, N., Nanopoulos, D., Sarkar, S.: Tests of quantum gravity from observations of \(\gamma \)-ray bursts. Nature 393(6687), 763–765 (1998)

    ADS  Article  Google Scholar 

  5. Barat, N., Kimball, J.: Localization and causality for a free particle. Phys. Lett. A 308(2–3), 110–115 (2003)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. Beckman, D., Gottesman, D., Nielsen, M.A., Preskill, J.: Causal and localizable quantum operations. Phys. Rev. A 64, 052309 (2001)

    ADS  Article  Google Scholar 

  7. Beem, J., Ehrlich, P., Easley, K.: Global Lorentzian Geometry. Volume 202 of Monographs and Textbooks in Pure and Applied Mathematics. CRC Press, Boca Raton (1996)

    Google Scholar 

  8. Bernal, A., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Commun. Math. Phys. 257(1), 43–50 (2005)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. Berry, M.V.: Causal wave propagation for relativistic massive particles: physical asymptotics in action. Eur. J. Phys. 33(2), 279 (2012)

    Article  MATH  Google Scholar 

  10. Bertrand, J., Puel, M.: The optimal mass transport problem for relativistic costs. Calc. Var. Partial Differ. Equ. 46(1), 353–374 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  11. Besnard, F.: A noncommutative view on topology and order. J. Geom. Phys. 59(7), 861–875 (2009)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  12. Beuthe, M.: Oscillations of neutrinos and mesons in quantum field theory. Phys. Rep. 375(2–3), 105–218 (2003)

    ADS  MathSciNet  Article  Google Scholar 

  13. Brenier, Y.: Optimal Transportation and Applications: Lectures given at the C.I.M.E. Summer School, held in Martina Franca, Italy, September 2–8, 2001. Chapter Extended Monge–Kantorovich Theory, pp. 91–121. Springer, Berlin (2003)

  14. Brenier, Y., Frisch, U., Hénon, M., Loeper, G., Matarrese, S., Mohayaee, R., Sobolevskii, A.: Reconstruction of the early universe as a convex optimization problem. Mon. Not. R. Astron. Soc. 346(2), 501–524 (2003)

    ADS  Article  Google Scholar 

  15. Buchholz, D., Fredenhagen, K.: Locality and the structure of particle states. Commun. Math. Phys. 84(1), 1–54 (1982)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. Buchholz, D., Yngvason, J.: There are no causality problems for Fermi’s two-atom system. Phys. Rev. Lett. 73, 613–616 (1994)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. Buscemi, F., Compagno, G.: Non-locality and causal evolution in QFT. J. Phys. B At. Mol. Opt. Phys. 39(15), 695–709 (2006)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. Chruściel, P.T., Grant, J.D.E., Minguzzi, E.: On differentiability of volume time functions. Ann. Henri Poincaré 17(10), 2801–2824 (2016)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. Doplicher, S., Fredenhagen, K., Roberts, J.E.: Spacetime quantization induced by classical gravity. Phys. Lett. B 331(1–2), 39–44 (1994)

    ADS  MathSciNet  Article  Google Scholar 

  20. Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of spacetime at the planck scale and quantum fields. Commun. Math. Phys. 172(1), 187–220 (1995)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. Eckstein, M., Miller, T.: Causal evolution of wave packets. Phys. Rev. A 95, 032106 (2017). doi:10.1103/PhysRevA.95.032106

  22. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47(10), 777–780 (1935)

    ADS  Article  MATH  Google Scholar 

  23. Feinberg, G.: Possibility of faster-than-light particles. Phys. Rev. 159, 1089–1105 (1967)

    ADS  Article  Google Scholar 

  24. Foldy, L.L., Wouthuysen, S.A.: On the Dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78(1), 29 (1950)

    ADS  Article  MATH  Google Scholar 

  25. Franco, N., Eckstein, M.: An algebraic formulation of causality for noncommutative geometry. Class. Quantum Gravity 30(13), 135007 (2013)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. Franco, N., Eckstein, M.: Exploring the causal structures of almost commutative geometries. Symmetry Integr. Geom. Methods Appl. 10, 010 (2014). (Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rieffel)

    MathSciNet  MATH  Google Scholar 

  27. Franco, N., Eckstein, M.: Causality in noncommutative two-sheeted space-times. J. Geom. Phys. 96, 42–58 (2015)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. Frisch, U., Matarrese, S., Mohayaee, R., Sobolevski, A.: A reconstruction of the initial conditions of the universe by optimal mass transportation. Nature 417(6886), 260–262 (2002)

    ADS  Article  Google Scholar 

  29. Frisch, U., Podvigina, O., Villone, B., Zheligovsky, V.: Optimal transport by omni-potential flow and cosmological reconstruction. J. Math. Phys. 53(3), 033703 (2012)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. Frisch, U., Sobolevskii, A.: Application of optimal transport theory to reconstruction of the early universe. J. Math. Sci. 133(4), 1539–1542 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  31. Garling, D.J.H.: Inequalities: A Journey into Linear Analysis. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  32. Gell-Mann, M., Goldberger, M.L., Thirring, W.E.: Use of causality conditions in quantum theory. Phys. Rev. 95, 1612–1627 (1954)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  33. Haag, R.: Local Quantum Physics: Fields, Particles, Algebras. Theoretical and Mathematical Physics. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  34. Hawking, S.W.: Chronology protection conjecture. Phys. Rev. D 46, 603–611 (1992)

    ADS  MathSciNet  Article  Google Scholar 

  35. Hegerfeldt, G.C.: Remark on causality and particle localization. Phys. Rev. D 10, 3320–3321 (1974)

    ADS  Article  Google Scholar 

  36. Hegerfeldt, G.C.: Violation of causality in relativistic quantum theory? Phys. Rev. Lett. 54, 2395–2398 (1985)

    ADS  MathSciNet  Article  Google Scholar 

  37. Hegerfeldt, G.C.: Causality, particle localization and positivity of the energy. In: Bohm, A., Doebner, H.-D., Kielanowski, P. (eds.) Irreversibility and Causality Semigroups and Rigged Hilbert Spaces, Volume 504 of Lecture Notes in Physics, pp. 238–245. Springer, Berlin (1998)

    Chapter  Google Scholar 

  38. Hegerfeldt, G.C.: Particle localization and the notion of Einstein causality. In: Horzela, A., Kapuścik, E. (eds.) Extensions of Quantum Theory, pp. 9–16. Apeiron, Montreal (2001)

    Google Scholar 

  39. Hegerfeldt, G.C., Ruijsenaars, S.N.M.: Remarks on causality, localization, and spreading of wave packets. Phys. Rev. D 22, 377–384 (1980)

    ADS  MathSciNet  Article  Google Scholar 

  40. Miller, T.: Polish spaces of causal curves. J. Geom. Phys. 116, 295–315 (2017). doi:10.1016/j.geomphys.2017.02.006

    ADS  MathSciNet  Article  Google Scholar 

  41. Miller, T.: On the causality and \(K\)-causality between measures. Preprint arXiv:1702.00702 [math-ph] (2017)

  42. Minguzzi, E.: Time functions as utilities. Commun. Math. Phys. 298(3), 855–868 (2010)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. In: Alekseevsky, D.V., Baum, H. (eds.) Recent Developments in Pseudo-Riemannian Geometry. ESI Lectures in Mathematics and Physics, pp. 299–358. European Mathematical Society, Helsinki (2008)

    Chapter  Google Scholar 

  44. Moretti, V.: Aspects of noncommutative Lorentzian geometry for globally hyperbolic spacetimes. Rev. Math. Phys. 15(10), 1171–1217 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  45. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  46. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)

    MATH  Google Scholar 

  47. Pawłowski, M., Paterek, T., Kaszlikowski, D., Scarani, V., Winter, A., Żukowski, M.: Information causality as a physical principle. Nature 461(7267), 1101–1104 (2009)

    ADS  Article  Google Scholar 

  48. Penrose, R.: Techniques of Differential Topology in Relativity. Volume 7 of CBMS–NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1972)

    Book  Google Scholar 

  49. Peres, A., Terno, D.R.: Quantum information and relativity theory. Rev. Mod. Phys. 76, 93–123 (2004)

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. Ringström, H.: The Cauchy Problem in General Relativity. ESI Lectures in Mathematics and Physics. European Mathematical Society, Helsinki (2009)

    Book  MATH  Google Scholar 

  51. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  52. Srivastava, S.M.: A Course on Borel Sets, Volume 180 of Graduate Texts in Mathematics. Springer, New York (2008)

    Google Scholar 

  53. Strange, P.: Relativistic Quantum Mechanics: with Applications in Condensed Matter and Atomic Physics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  54. Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. Princeton Landmarks in Mathematics and Physics. Princeton University Press, Princeton (2000)

    MATH  Google Scholar 

  55. Suhr, S.: Theory of optimal transport for Lorentzian cost functions. Preprint arXiv:1601.04532 [math-ph] (2016)

  56. Thaller, B.: The Dirac Equation, Volume 31 of Theoretical and Mathematical Physics. Springer, Berlin (1992)

    Google Scholar 

  57. van Suijlekom, W.D.: Noncommutative Geometry and Particle Physics. Mathematical Physics Studies. Springer, New York (2015)

    MATH  Google Scholar 

  58. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  59. Villani, C.: Optimal Transport: Old and New. Volume 338 of Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2008)

    Google Scholar 

  60. Wagner, R., Shields, B., Ware, M., Su, Q., Grobe, R.: Causality and relativistic localization in one-dimensional Hamiltonians. Phys. Rev. A 83, 062106 (2011)

    ADS  Article  Google Scholar 

  61. Willard, S.: General Topology. Addison-Wesley, Reading (1970)

    MATH  Google Scholar 

  62. Winful, H.G.: Tunneling time, the Hartman effect, and superluminality: a proposed resolution of an old paradox. Phys. Rep. 436(1–2), 1–69 (2006)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michał Eckstein.

Additional information

Communicated by James A. Isenberg.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eckstein, M., Miller, T. Causality for Nonlocal Phenomena. Ann. Henri Poincaré 18, 3049–3096 (2017). https://doi.org/10.1007/s00023-017-0566-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0566-1