Skip to main content
Log in

The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We give a nonperturbative construction of a distinguished state for the quantized Dirac field in Minkowski space in the presence of a time-dependent external field of the form of a plane electromagnetic wave. By explicit computation of the fermionic signature operator, it is shown that the Dirac operator has the strong mass oscillation property. We prove that the resulting fermionic projector state is a Hadamard state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H.: On quasifree states of \({{\rm CAR}}\) and Bogoliubov automorphisms. Publ. Res. Inst. Math. Sci. 6, 385–442 (1970/71)

  2. Bär, C., Fredenhagen, K. (eds.): Quantum Field Theory on Curved Spacetimes. Lecture Notes in Physics, vol. 786. Springer, Berlin (2009)

  3. Bär, C., Ginoux, N., Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization, ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich (2007)

  4. Dappiaggi, C., Hack, T.-P., Pinamonti, N.: The extended algebra of observables for Dirac fields and the trace anomaly of their stress-energy tensor. Rev. Math. Phys. 21(10), 1241–1312 (2009). arXiv:0904.0612 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  5. Deckert, D.-A., Dürr, D., Merkl, F., Schottenloher, M.: Time-evolution of the external field problem in quantum electrodynamics. J. Math. Phys. 51(12), 122301, 28 (2010). arXiv:0906.0046v2 [math-ph]

  6. Deckert, D.-A., Merkl, F.: External field QED on Cauchy surfaces for varying electromagnetic fields. Commun. Math. Phys. 345(3), 973–1017 (2016). arXiv:1505.06039 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Fewster, C.J., Lang, B.: Pure quasifree states of the Dirac field from the fermionic projector. Class. Quantum Gravity 32(9), 095001, 30 (2015). arXiv:1408.1645 [math-ph]

  8. Fewster, C.J., Verch, R.: The necessity of the Hadamard condition. Class. Quantum Gravity 30(23), 235027, 20 (2013). arXiv:1307.5242 [gr-qc]

  9. Fierz, H., Scharf, G.: Particle interpretation for external field problems in QED. Helv. Phys. Acta 52(4), 437–453 (1979)

    MathSciNet  Google Scholar 

  10. Finster, F.: Definition of the Dirac sea in the presence of external fields. Adv. Theor. Math. Phys. 2(5), 963–985 (1998). arXiv:hep-th/9705006

    Article  MathSciNet  MATH  Google Scholar 

  11. Finster, F.: Light-cone expansion of the Dirac sea in the presence of chiral and scalar potentials. J. Math. Phys. 41(10), 6689–6746 (2000). arXiv:hep-th/9809019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Finster, F.: The continuum limit of causal fermion systems. In: Fundamental Theories of Physics, vol. 186. Springer, Berlin (2016). arXiv:1605.04742 [math-ph]

  13. Finster, F., Müller, O.: Lorentzian spectral geometry for globally hyperbolic surfaces. Adv. Theor. Math. Phys. 20(4), 751–820 (2016). arXiv:1411.3578 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  14. Finster, F., Murro, S., Röken, C.: The fermionic projector in a time-dependent external potential: Mass oscillation property and Hadamard states. J. Math. Phys. 57, 072303 (2016). arXiv:1501.05522 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Finster, F.: The fermionic signature operator and quantum states in Rindler space-time. (2016). arXiv:1606.03882 [math-ph]

  16. Finster, F., Reintjes, M.: A non-perturbative construction of the fermionic projector on globally hyperbolic manifolds I: space-times of finite lifetime. Adv. Theor. Math. Phys. 19(4), 761–803 (2015). arXiv:1301.5420 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  17. Finster, F.: A non-perturbative construction of the fermionic projector on globally hyperbolic manifolds II - Space-times of infinite lifetime. Adv. Theor. Math. Phys. 20(5), 1007–1048 (2016). arXiv:1312.7209 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  18. Fradkin, E.S., Gitman, D.M., Shvartsman, ShM: Quantum Electrodynamics with Unstable Vacuum. Springer, Berlin (1991)

    Book  Google Scholar 

  19. Hollands, S., Wald, R.M.: Quantum fields in curved spacetime. Phys. Rep. 574, 1–35 (2015). arXiv:1401.2026 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 26. Springer, Berlin (1997)

  21. John, F.: Partial Differential Equations, fourth edn., Applied Mathematical Sciences, vol. 1. Springer, New York (1991)

  22. Klaus, M., Scharf, G.: The regular external field problem in quantum electrodynamics. Helv. Phys. Acta 50(6), 779–802 (1977)

    MathSciNet  Google Scholar 

  23. Klaus, M., Scharf, G.: Vacuum polarization in Fock space. Helv. Phys. Acta 50(6), 803–814 (1977)

    MathSciNet  Google Scholar 

  24. Rejzner, K.: Perturbative Algebraic Quantum Field Theory, Math. Phys. Stud. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  25. Ruijsenaars, S.N.M.: Charged particles in external fields. I. Classical theory. J. Math. Phys. 18(4), 720–737 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  26. Sahlmann, H., Verch, R.: Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys. 13(10), 1203–1246 (2001). arXiv:math-ph/0008029

    Article  MathSciNet  MATH  Google Scholar 

  27. Schwinger, J.: On gauge invariance and vacuum polarization. Phys. Rev. 2(82), 664–679 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Shale, D., Stinespring, W.F.: Spinor representations of infinite orthogonal groups. J. Math. Mech. 14, 315–322 (1965)

    MathSciNet  MATH  Google Scholar 

  29. Stephani, H., Kramer, D., MacCallum, M., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations, second edn., Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2003)

  30. Treude, J.-H.: Estimates of massive Dirac wave functions near null infinity. Dissertation, Universität Regensburg. http://epub.uni-regensburg.de/32344/ (2015)

  31. Volkow, D.M.: Über eine Klasse von Lösungen der Diracschen Gleichung. Z. Physik 94, 250–260 (1935)

    Article  ADS  Google Scholar 

  32. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics, Chicago Lectures in Physics. University of Chicago Press, Chicago (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Finster.

Additional information

Communicated by Karl-Henning Rehren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finster, F., Reintjes, M. The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave. Ann. Henri Poincaré 18, 1671–1701 (2017). https://doi.org/10.1007/s00023-017-0557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0557-2

Navigation