Skip to main content
Log in

The Trapping Effect on Degenerate Horizons

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We show that degenerate horizons exhibit a new trapping effect. Specifically, we obtain a non-degenerate Morawetz estimate for the wave equation in the domain of outer communications of extremal Reissner–Nordström up to and including the future event horizon. We show that such an estimate requires (1) a higher degree of regularity for the initial data, reminiscent of the regularity loss in the high-frequency trapping estimates on the photon sphere, and (2) the vanishing of an explicit quantity that depends on the restriction of the initial data on the horizon. The latter condition demonstrates that degenerate horizons exhibit a new \(L^{2}\) concentration phenomenon (namely, a global trapping effect, in the sense that this effect is not due to individual underlying null geodesics as in the case of the photon sphere). We moreover uncover a new stable higher-order trapping effect; we show that higher-order estimates do not hold regardless of the degree of regularity and the support of the initial data. We connect our findings to the spectrum of the stability operator in the theory of marginally outer trapped surfaces. Our methods and results play a crucial role in our upcoming works on linear and nonlinear wave equations on extremal black hole backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, L., Blue, P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. arXiv:0908.2265 (2009)

  2. Angelopoulos, Y.: Nonlinear wave equations with null condition on extremal Reissner-Nordström spacetimes I: spherical symmetry. To appear in IMRN. arXiv:1408.4478 (2014)

  3. Aretakis, S.: The wave equation on extreme Reissner–Nordström black hole spacetimes: stability and instability results. arXiv:1006.0283 (2010)

  4. Aretakis, S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations I. Commun. Math. Phys. 307, 17–63 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Aretakis, S.: Stability and instability of extreme Reissner–Nordström black hole spacetimes for linear scalar perturbations II. Ann. Henri Poincaré 12, 1491–1538 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Aretakis, S.: Decay of axisymmetric solutions of the wave equation on extreme Kerr backgrounds. J. Funct. Anal. 263, 2770–2831 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aretakis, S.: The characteristic gluing problem and conservation laws for the wave equation on null hypersurfaces. arXiv:1310.1365 (2013)

  8. Aretakis, S.: A note on instabilities of extremal black holes from afar. Class. Quantum Gravity 30, 095010 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Aretakis, S.: On a foliation-covariant elliptic operator on null hypersurfaces. To appear in IMRN. arXiv:1310.1348 (2013)

  10. Aretakis, S.: On a non-linear instability of extremal black holes. Phys. Rev. D 87, 084052 (2013)

    Article  ADS  Google Scholar 

  11. Aretakis, S.: Horizon instability of extremal black holes. Adv. Theor. Math. Phys. 19, 507–530 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dafermos, M., Rodnianski, I.: The redshift effect and radiation decay on black hole spacetimes. Commun. Pure Appl. Math. 62, 859–919 (2009). arXiv:0512.119

  13. Dafermos, M., Rodnianski, I.: Lectures on black holes and linear waves. In: Evolution Equations, Clay Mathematics Proceedings, Vol. 17, Am. Math. Soc. Providence, RI, pp. 97–205 (2013). arXiv:0811.0354

  14. Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: The full subextremal case \(|a| < m\). arXiv:1402.7034

  15. Dafermos, M., Holzegel, G., Rodnianski, I.: The linear stability of the Schwarzschild solution to gravitational perturbations. arXiv:1601.06467 (2016)

  16. Dain, S., Dotti, G.: The wave equation on the extreme Reissner–Nordström black hole. arXiv:1209.0213 (2012)

  17. Dyatlov, S.: Exponential energy decay for Kerr-de Sitter black holes beyond event horizons. Math. Res. Lett. 18, 1023–1035 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gajic, D.: Linear waves in the interior of extremal black holes I. arXiv:1509.06568 (2015)

  19. Holzegel, G., Smulevici, J.: Decay properties of Klein–Gordon fields on Kerr-AdS spacetimes. Commun. Pure Appl. Math. 66, 1751–1802 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kay, B., Wald, R.: Linear stability of Schwarzschild under perturbations which are nonvanishing on the bifurcation 2-sphere. Class. Quantum Gravity 4, 893–898 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Keir, J.: Slowly decaying waves on spherically symmetric spacetimes and an instability of ultracompact neutron stars. arXiv:1404.7036 (2014)

  22. Klainerman, S.: Uniform decay estimates and the Lorentz invariance of the classical wave equation. Commun. Pure Appl. Math. 38, 321–332 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Lucietti, J., Murata, K., Reall, H.S., Tanahashi, N.: On the horizon instability of an extreme Reissner-Nordström black hole. JHEP 1303, 035 (2013). arXiv:1212.2557

  24. Lucietti, J., Reall, H.: Gravitational instability of an extreme Kerr black hole. Phys. Rev. D 86, 104030 (2012)

    Article  ADS  Google Scholar 

  25. Mars, M.: Stability of MOTS in totally geodesic null horizons. Class. Quantum Gravity 29, 145019 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Moschidis, G.: Logarithmic local energy decay for scalar waves on a general class of asymptotically flat spacetimes. arXiv:1509.08495 (2015)

  27. Murata, K.: Instability of higher dimensional extreme black holes. Class. Quantum Gravity 30, 075002 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Murata, K., Reall, H.S., Tanahashi, N.: What happens at the horizon(s) of an extreme black hole? arXiv:1307.6800 (2013)

  29. Ori, A.: Late-time tails in extremal Reissner–Nordström spacetime. arXiv:1305.1564 (2013)

  30. Ralston, J.: Solutions of the wave equation with localized energy. Commun. Pure Appl. Math. 22, 807–823 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  31. Regge, T., Wheeler, J.: Stability of a Schwarzschild singularity. Phys. Rev. 108, 1063–1069 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Sbierski, J.: Characterisation of the energy of Gaussian beams on Lorentzian manifolds with applications to black hole spacetimes. arXiv:1311.2477 (2013)

  33. Sela, O.: Late-time decay of perturbations outside extremal charged black hole. arXiv:1510.06169 (2015)

  34. Tataru, D., Tohaneanu, M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. 2011, 248–292 (2008)

    MATH  Google Scholar 

  35. Tsukamoto, N., Kimura, M., Harada, T.: High energy collision of particles in the vicinity of extremal black holes in higher dimensions: Banados-Silk-West process as linear instability of extremal black holes. arXiv:1310.5716 (2013)

  36. Wunsch, J., Zworski, M.: Resolvent estimates for normally hyperbolic trapped sets. Ann. Henri Poincaré 12, 1349–1385 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanos Aretakis.

Additional information

Communicated by James A. Isenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelopoulos, Y., Aretakis, S. & Gajic, D. The Trapping Effect on Degenerate Horizons. Ann. Henri Poincaré 18, 1593–1633 (2017). https://doi.org/10.1007/s00023-016-0545-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-016-0545-y

Navigation