Annales Henri Poincaré

, Volume 18, Issue 1, pp 113–191 | Cite as

Quantum Many-Body Fluctuations Around Nonlinear Schrödinger Dynamics

  • Chiara Boccato
  • Serena Cenatiempo
  • Benjamin Schlein


We consider the many-body quantum dynamics of systems of bosons interacting through a two-body potential \({N^{3\beta-1} V (N^\beta x)}\), scaling with the number of particles N. For \({0 < \beta < 1}\), we obtain a norm-approximation of the evolution of an appropriate class of data on the Fock space. To this end, we need to correct the evolution of the condensate described by the one-particle nonlinear Schrödinger equation by means of a fluctuation dynamics, governed by a quadratic generator.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adami R., Golse F., Teta A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127, 1193–1220 (2007)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ammari Z., Falconi M., Pawilowski B.: On the rate of convergence for the mean-field approximation of many-body quantum dynamics. Commun. Math. Sci. 14(5), 1417–1442 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ammari Z., Nier F.: Mean-field limit for bosons and propagation of Wigner measures. J. Math. Phys. 50, 042107 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bardos C., Golse F., Mauser N.J.: Weak coupling limit of the N-particle Schrödinger equation. Methods Appl. Anal. 2, 275–293 (2000)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Ben Arous G., Kirkpatrick K., Schlein B.: A central limit theorem in many-body quantum dynamics. Commun. Math. Phys. 321, 371–417 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Benedikter N., de Oliveira G., Schlein B.: Quantitative derivation of the Gross–Pitaevskii equation. Commun. Pure Appl. Math. 68(8), 1399–1482 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Buchholz S., Saffirio C., Schlein B.: Multivariate central limit theorem in quantum dynamics. J. Stat. Phys. 154, 113–152 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen X.: Second order corrections to mean-field evolution for weakly interacting bosons in the case of three-body interactions. Arch. Ration. Mech. Anal. 203, 455–497 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen X., Holmer J.: Focusing quantum many-body dynamics: the rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation. Arch. Ration. Mech. Anal. 221, 631–676 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chen, X., Holmer, J.: Correlation structures, many-body scattering processes and the derivation of the Gross–Pitaevskii hierarchy. Preprint arXiv:1409.1425
  11. 11.
    Chen L., Lee J.O., Schlein B.: Rate of convergence towards Hartree dynamics. J. Stat. Phys. 144(4), 872–903 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chen T., Pavlović N.: The quintic NLS as the mean-field limit of a boson gas with three-body interactions. J. Funct. Anal. 260, 959–997 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Derezinski J., Napiórkowski M.: Excitation spectrum of interacting bosons in the mean-field infinite-volume limit. Annales Henri Poincaré 15(12), 2409–2439 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Erdős L., Michelangeli A., Schlein B.: Dynamical formation of correlations in a Bose–Einstein condensate. Commun. Math. Phys. 289(3), 1171–1210 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Elgart A., Schlein B.: Mean-field dynamics for boson stars. Commun. Pure Appl. Math. 60(4), 500–545 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Erdös L., Schlein B., Yau H.T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Erdős L., Schlein B., Yau H.-T.: Derivation of the cubic nonlinear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167, 515–614 (2006)ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Erdős L., Schlein B., Yau H.-T.: Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate. Ann. Math. (2) 172(1), 291–370 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Erdős L., Schlein B., Yau H.-T.: Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential. J. Am. Math. Soc. 22, 1099–1156 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Erdős L., Schlein B., Yau H.-T.: The ground state energy of a low density Bose gas: a second order upper bound. Phys. Rev. A 78, 053627 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Erdős L., Yau H.-T.: Derivation of the nonlinear Schrödinger equation from a many-body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Fröhlich J., Knowles A., Schwarz S.: On the mean-field limit of bosons with Coulomb two-body interaction. Commun. Math. Phys. 288(3), 1023–1059 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ginibre, J., Velo, G.: The classical field limit of scattering theory for nonrelativistic many-boson systems. I and II. Commun. Math. Phys. 66(1), 37–76 (1979), and 68(1), 45–68 (1979)Google Scholar
  24. 24.
    Grech P., Seiringer R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322(2), 559–591 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Grillakis M., Machedon M.: Pair excitations and the mean field approximation of interacting bosons, I. Commun. Math. Phys. 324, 601–636 (2013)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Grillakis M., Machedon M., Margetis D.: Second-order corrections to mean-field evolution of weakly interacting bosons. I. Commun. Math. Phys. 294(1), 273–301 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Grillakis M., Machedon M., Margetis D.: Second-order corrections to mean-field evolution of weakly interacting bosons. II. Adv. Math. 228(3), 1788–1815 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hepp K.: The classical limit for quantum mechanical correlation functions. Commun. Math. Phys. 35, 265–277 (1974)ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    Kirkpatrick K., Schlein B., Staffilani G.: Derivation of the two dimensional nonlinear Schrödinger equation from many-body quantum dynamics. Am. J. Math. 133(1), 91–130 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Knowles A., Pickl P.: Mean-field dynamics: singular potentials and rate of convergence. Commun. Math. Phys. 298(1), 101–138 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Lewin, M., Nam, P.T., Schlein, B.: Fluctuations around Hartree states in the mean-field regime. Preprint arXiv:1307.0665
  32. 32.
    Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Preprint arXiv:1211.2778
  33. 33.
    Lieb E.H., Seiringer R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)ADSCrossRefGoogle Scholar
  34. 34.
    Lieb E.H., Seiringer R., Yngvason J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    Pickl, P.: Derivation of the time dependent Gross Pitaevskii equation with external fields. Preprint arXiv:1001.4894
  36. 36.
    Rodnianski I., Schlein B.: Quantum fluctuations and rate of convergence towards mean-field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Seiringer R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306, 565–578 (2011)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Spohn H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 52(3), 569–615 (1980)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    Yau H.-T., Yin J.: The second order upper bound for the ground energy of a Bose gas. J. Stat. Phys. 136(3), 453–503 (2009)ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Chiara Boccato
    • 1
  • Serena Cenatiempo
    • 1
  • Benjamin Schlein
    • 1
  1. 1.Institute of MathematicsUniversity of ZurichZurichSwitzerland

Personalised recommendations