Skip to main content
Log in

Strong Confinement Limit for the Nonlinear Schrödinger Equation Constrained on a Curve

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

This study is devoted to the cubic nonlinear Schrödinger equation in a two-dimensional waveguide with shrinking cross section of order \({\varepsilon}\). For the Cauchy data living essentially on the first mode of the transverse Laplacian, we provide a tensorial approximation of the solution \({\psi^{\varepsilon}}\) in the limit \({\varepsilon \to 0}\), with an estimate of the approximation error, and derive a limiting nonlinear Schrödinger equation in dimension one. If the Cauchy data \({\psi^{\varepsilon}_0}\) have a uniformly bounded energy, then it is a bounded sequence in \({\mathsf{H}^1}\), and we show that the approximation is of order \({\mathcal{O}(\sqrt{\varepsilon})}\). If we assume that \({\psi^{\varepsilon}_0}\) is bounded in the graph norm of the Hamiltonian, then it is a bounded sequence in \({\mathsf{H}^{2}}\), and we show that the approximation error is of order \({\mathcal{O}(\varepsilon)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoci F., Prizzi M.: Reaction-diffusion equations on unbounded thin domains. Topol. Methods Nonlinear Anal. 18(2), 283–302 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Anton R.: Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains. Bull. Soc. Math. France 136(1), 27–65 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Bao W., Ge Y., Jaksch D., Markowich P.A., Weishäupl R.M.: Convergence rate of dimension reduction in Bose-Einstein condensates. Comput. Phys. Commun. 177(11), 832–850 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bao W., Markowich P.A., Schmeiser C., Weishäupl R.M.: On the Gross-Pitaevskii equation with strongly anisotropic confinement: formal asymptotics and numerical experiments. Math. Models Methods Appl. Sci. 15(5), 767–782 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben Abdallah N., Cai Y., Castella F., Méhats F.: Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinet. Relat. Models 4(4), 831–856 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ben Abdallah N., Castella F., Delebecque-Fendt F., Méhats F.: The strongly confined Schrödinger-Poisson system for the transport of electrons in a nanowire. SIAM J. Appl. Math. 69(4), 1162–1173 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben Abdallah N., Castella F., Méhats F.: Time averaging for the strongly confined nonlinear Schrödinger equation, using almost-periodicity. J. Differ. Equ. 245(1), 154–200 (2008)

    Article  ADS  MATH  Google Scholar 

  8. Ben Abdallah, N., Méhats, F., Pinaud, O.: Adiabatic approximation of the Schrödinger-Poisson system with a partial confinement. SIAM J. Math. Anal. 36(3), 986–1013 (2004/05, electronic)

  9. Ben Abdallah N., Méhats F., Schmeiser C., Weishäupl R.M.: The nonlinear Schrödinger equation with a strongly anisotropic harmonic potential. SIAM J. Math. Anal. 37(1), 189–199 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Blair, M.D., Smith, H.F., Sogge, C.D.: On Strichartz estimates for Schrödinger operators in compact manifolds with boundary. Proc. Am. Math. Soc. 136(1), 247–256 (2008, electronic)

  11. Brezis H., Gallouët T.: Nonlinear Schrödinger evolution equations. Nonlinear Anal. 4(4), 677–681 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cazenave, T.: Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, vol. 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence (2003)

  13. Chenaud B., Duclos P., Freitas P., Krejčiřík D.: Geometrically induced discrete spectrum in curved tubes. Differ. Geom. Appl. 23(2), 95–105 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. da Costa R.C.T.: Quantum mechanics of a constrained particle. Phys. Rev. A (3) 23(4), 1982–1987 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  15. da Costa R.C.T.: Constraints in quantum mechanics. Phys. Rev. A (3) 25(6), 2893–2900 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  16. Delebecque F.: An asymptotic model for the transport of an electron gas in a slab. Math. Models Methods Appl. Sci. 21(7), 1443–1478 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Duclos P., Exner P.: Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7(1), 73–102 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Exner P., Šeba P.: Bound states in curved quantum waveguides. J. Math. Phys. 30(11), 2574–2580 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gérard P., Méhats F.: The Schrödinger-Poisson system on the sphere. SIAM J. Math. Anal. 43(3), 1232–1268 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Krejčiřík D., Raymond N.: Magnetic effects in curved quantum waveguides. Ann. Henri Poincaré 15(10), 1993–2024 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Krejčiřík D., Šediváková H.: The effective Hamiltonian in curved quantum waveguides under mild regularity assumptions. Rev. Math. Phys. 24(7), 1250018, 39 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Nirenberg L.: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 3(13), 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  23. Ogawa T.: A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations. Nonlinear Anal. 14(9), 765–769 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wachsmuth, J., Teufel, S.: Effective Hamiltonians for constrained quantum systems. Mem. Am. Math. Soc. 230(1083), vi+83 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Raymond.

Additional information

Communicated by Nader Masmoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méhats, F., Raymond, N. Strong Confinement Limit for the Nonlinear Schrödinger Equation Constrained on a Curve. Ann. Henri Poincaré 18, 281–306 (2017). https://doi.org/10.1007/s00023-016-0511-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-016-0511-8

Navigation