Skip to main content
Log in

Rigorous Results Concerning the Holstein–Hubbard Model

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

The Holstein model has widely been accepted as a model comprising electrons interacting with phonons; analysis of this model’s ground states was accomplished two decades ago. However, the results were obtained without completely taking repulsive Coulomb interactions into account. Recent progress has made it possible to treat such interactions rigorously; in this paper, we study the Holstein–Hubbard model with repulsive Coulomb interactions. The ground-state properties of the model are investigated; in particular, the ground state of the Hamiltonian is proven to be unique for an even number of electrons on a bipartite connected lattice. In addition, we provide a rigorous upper bound on charge susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bös W.: Direct integrals of selfdual cones and standard forms of von Neumann algebras. Invent. Math. 37, 241–251 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Dyson F.J., Lieb E.H., Simon B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  3. Dollard, J.D., Friedman, C.N.: Product integration with application to differential equations. In: Encyclopedia of Mathematics and its Applications, vol. 10. Addison-Wesley Publishing Company, Reading (1979)

  4. Falk H., Bruch L.W.: Susceptibility and fluctuation. Phys. Rev. 180, 442–444 (1969)

    Article  ADS  Google Scholar 

  5. Faris W.G.: Invariant cones and uniqueness of the ground state for fermion systems. J. Math. Phys. 13, 1285–1290 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Freericks J.K., Lieb E.H.: Ground state of a general electron–phonon Hamiltonian is a spin singlet. Phys. Rev. B 51, 2812–2821 (1995)

    Article  ADS  Google Scholar 

  7. Fröhlich J.: On the infrared problem in a model of scalar electrons and massless, scalar bosons. Ann. Inst. H. Poincaré Sect. A (N.S.) 19, 1–103 (1973)

    MathSciNet  MATH  Google Scholar 

  8. Fröhlich J., Israel R., Lieb E.H., Simon B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1–34 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  9. Fröhlich J., Simon B., Spencer T.: Infrared bounds, phase transitions and continuous symmetry breaking. Commun. Math. Phys. 50, 79–95 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  10. Glimm J., Jaffe A.: Quantum Physics. A Functional Integral Point of View, 2nd edn. Springer, New York (1987)

    MATH  Google Scholar 

  11. Gross L.: Existence and uniqueness of physical ground states. J. Funct. Anal. 10, 52–109 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holstein T.: Studies of polaron motion: part I. The molecular-crystal model. Ann. Phys. 8, 325–342 (1959)

    Article  ADS  MATH  Google Scholar 

  13. Hubbard J.: Electron correlation in narrow energy bands. Proc. R. Soc. (Lond.) A 276, 238–257 (1963)

    Article  ADS  Google Scholar 

  14. Kishimoto A., Robinson D.W.: Positivity and monotonicity properties of C 0-semigroups. I. Commun. Math. Phys. 75, 67–84 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Kishimoto A., Robinson D.W.: Positivity and monotonicity properties of C 0-semigroups. II. Commun. Math. Phys. 75, 85–101 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Kubo K., Kishi T.: Rigorous bounds on the susceptibilities of the Hubbard model. Phys. Rev. B 41, 4866–4868 (1990)

    Article  ADS  Google Scholar 

  17. Lang I.G., Firsov Y.A.: Kinetic theory of semiconductors with low mobility. Sov. Phys. JETP 16, 1301 (1963)

    ADS  MATH  Google Scholar 

  18. Lieb E.H., Mattis D.C.: Ordering energy levels of interacting spin systems. J. Math. Phys. 3, 749–751 (1962)

    Article  ADS  MATH  Google Scholar 

  19. Lieb E.H., Wu F.Y.: Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett. 20, 1445–1448 (1968)

    Article  ADS  Google Scholar 

  20. Lieb E.H.: Two theorems on the Hubbard model. Phys. Rev. Lett. 62, 1201–1204 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  21. Löwen H.: Absence of phase transitions in Holstein systems. Phys. Rev. B 37, 8661–8667 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. Miyao T.: Nondegeneracy of ground states in nonrelativistic quantum field theory. J. Oper. Theory 64, 207–241 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Miyao T.: Ground state properties of the SSH model. J. Stat. Phys. 149, 519–550 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Miyao T.: Monotonicity of the polaron energy. Rep. Math. Phys. 74, 379–398 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Miyao T.: Monotonicity of the polaron energy II: general theory of operator monotonicity. J. Stat. Phys. 153, 70–92 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Miyao T.: Upper bounds on the charge susceptibility of many-electron systems coupled to the quantized radiation field. Lett. Math. Phys. 105, 1119–1133 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Miyao, T.: Quantum Griffiths inequalities. To appear in J. Stat. Phys. arXiv:1507.05355

  28. Miyao, T.: Long-range charge order in the extended Holstein–Hubbard model. arXiv:1601.00765

  29. Miura Y.: On order of operators preserving selfdual cones in standard forms. Far East J. Math. Sci. (FJMS) 8, 1–9 (2003)

    MathSciNet  MATH  Google Scholar 

  30. Møller J.S.: The polaron revisited. Rev. Math. Phys. 18(5), 485–517 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 31, 83–112 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. II. With an appendix by Stephen Summers. Commun. Math. Phys. 42, 281–305 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Reed M., Simon B.: Methods of Modern Mathematical Physics, vol. IV. Academic Press, New York (1978)

    MATH  Google Scholar 

  34. Shen S.H.: Strongly correlated electron systems: spin-reflection positivity and some rigorous results. Int. J. Mod. Phys. B 12, 709–779 (1998)

    Article  ADS  Google Scholar 

  35. Simon B.: Functional Integration and Quantum Physics. Academic Press, New York (1979)

    MATH  Google Scholar 

  36. Simon, B.: Trace Ideals and Their Applications, 2nd edn. Mathematical Surveys and Monographs, vol. 120. American Mathematical Society, Providence (2005)

  37. Sloan A.D.: A nonperturbative approach to nondegeneracy of ground states in quantum field theory: polaron models. J. Funct. Anal. 16, 161–191 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  38. Su W.P., Schrieffer J.R., Heeger A.J.: Soliton excitations in polyacetylene. Phys. Rev. B 22, 2099–2111 (1980)

    Article  ADS  Google Scholar 

  39. Tasaki H.: Extension of Nagaoka’s theorem on the large-U Hubbard model. Phys. Rev. B 40, 9192–9193 (1989)

    Article  ADS  Google Scholar 

  40. Tian G.-S.: Lieb’s spin-reflection positivity methods and its applications to strongly correlated electron systems. J. Stat. Phys. 116, 629–680 (2004)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadahiro Miyao.

Additional information

Communicated by Vieri Mastropietro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyao, T. Rigorous Results Concerning the Holstein–Hubbard Model. Ann. Henri Poincaré 18, 193–232 (2017). https://doi.org/10.1007/s00023-016-0506-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-016-0506-5

Navigation