Annales Henri Poincaré

, Volume 17, Issue 12, pp 3399–3424 | Cite as

T-Duality Simplifies Bulk–Boundary Correspondence: Some Higher Dimensional Cases

  • Varghese Mathai
  • Guo Chuan Thiang


Recently we introduced T-duality in the study of topological insulators, and used it to show that T-duality transforms the bulk–boundary homomorphism into a simpler restriction map in two dimensions. In this paper, we partially generalize these results to higher dimensions in both the complex and real cases, and briefly discuss the 4D quantum Hall effect.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avila J.C., Schulz-Baldes H., Villegas-Blas C.: Topological invariants of edge states for periodic two-dimensional models. Math. Phys. Anal. Geom. 16(2), 137–170 (2013)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Atiyah M.F.: K-Theory. Benjamin, New York (1964)Google Scholar
  3. 3.
    Bellissard J., van Elst A., Schulz-Baldes H.: The noncommutative geometry of the quantum Hall effect. J. Math. Phys. 35(10), 5373–5451 (1994)ADSMathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Blackadar B.: K-theory for operator algebras. Mathematical Sciences Research Institute Publications, vol. 5. Cambridge University Press, Cambridge (1998)Google Scholar
  5. 5.
    Bourne C., Carey A.L., Rennie A.: The bulk-edge correspondence for the Quantum Hall effect in Kasparov theory. Lett. Math. Phys. 105(9), 1253–1273 (2015)ADSMathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bouwknegt, P., Evslin, J., Mathai, V.: T-duality: Topology Change from H-flux. Commun. Math. Phys. 249(2), 383–415 (2004). arXiv:hep-th/0306062
  7. 7.
    Bouwknegt, P., Evslin, J., Mathai, V.: On the Topology and Flux of T-Dual Manifolds. Phys. Rev. Lett. 92(18), 181601 (2004). arXiv:hep-th/0312052
  8. 8.
    Chang C.-Z. et al.: Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340(6129), 167–170 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    Connes A.: An analogue of the Thom isomorphism for crossed products of a C*-algebra by an action of \({\mathbb{R}}\). Adv. Math. 39(1), 31–55 (1981)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Connes A.: Non-commutative differential geometry. Publ. Math. Inst. Hautes Étude Sci. 62(1), 41–144 (1985)MATHCrossRefGoogle Scholar
  11. 11.
    Connes A.: Noncommutative Geometry. Academic Press, San Diego (1994)MATHGoogle Scholar
  12. 12.
    Elbau P., Graf G.M.: Equality of bulk and edge Hall conductance revisited. Commun. Math. Phys. 229(3), 415–432 (2002)ADSMathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Elliott, G.A.: On the K-theory of the C*-algebra generated by a projective representation of a torsion-free discrete abelian group. In: Arsene, G. et. al. (eds.) Operator Algebras and Group Representations I (Neptun, Romania 1980). In: Monographs Stud. Math., vol. 17, pp. 157–184. Pitman, Boston (1984)Google Scholar
  14. 14.
    Freed D.S., Moore G. W.: Twisted equivariant matter. Ann. Henri Poincaré 14(8), 1927–2023 (2013)ADSMathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Fu L., Kane C.L., Mele E.J.: Topological insulators in three dimensions. Phys. Rev. Lett. 98(10), 106803 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    Graf G.M., Porta M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324(3), 851–895 (2013)ADSMathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Haldane F.D.M.: Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the parity anomaly. Phys. Rev. Lett. 61(18), 2015 (1988)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Hannabuss, K.C., Mathai, V.: Noncommutative principal torus bundles via parametrised strict deformation quantization. Proc. Sympos. Pure Math. 81, 133–148 (2010). arXiv:0911.1886
  19. 19.
    Hannabuss, K.C., Mathai, V.: Parametrised strict deformation quantization of C*-bundles and Hilbert C*-modules. J. Aust. Math. Soc. 90(1), 25–38 (2011). arXiv:1007.4696
  20. 20.
    Hannabuss, K., Mathai, V., Thiang, G.C.: T-duality simplifies bulk-boundary correspondence: the parametrised case. arXiv:1510.04785
  21. 21.
    Hannabuss, K., Mathai, V., Thiang, G.C.: T-duality simplifies bulk-boundary correspondence: the general case. arXiv:1603.00116
  22. 22.
    Hatcher A.: Algebraic topology. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  23. 23.
    Hatsugai Y.: Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71(22), 3697 (1993)ADSMathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Hori K.: D-branes, T-duality, and index theory. Adv. Theor. Math. Phys. 3, 281–342 (1999)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Hsieh D., Qian D., Wray L., Xia Y., Hor Y. S., Cava R.J., Hasan M.Z.: A topological Dirac insulator in a quantum spin Hall phase. Nature 452(7190), 970–974 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Jotzu G., Messer M., Desbuquois R., Lebrat M., Uehlinger T., Greif D., Esslinger T.: Experimental realization of the topological Haldane model with ultracold fermions. Nature 515(7526), 237–240 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    Kellendonk J., Richter T., Schulz-Baldes H.: Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14(1), 87–119 (2002)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Kellendonk J., Schulz-Baldes H.: Quantization of edge currents for continuous magnetic operators. J. Funct. Anal. 209(2), 388–413 (2004)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Kellendonk J., Schulz-Baldes H.: Boundary maps for C*-crossed products with \({\mathbb{R}}\) with an application to the quantum Hall effect. Commun. Math. Phys. 249(3), 611–637 (2004)Google Scholar
  30. 30.
    König M., Wiedmann S., Brüne C., Roth A., Buhmann H., Molenkamp L.W., Qi X.-L., Zhang S.-C.: Quantum spin Hall insulator state in HgTe quantum wells. Science 318(5851), 766–770 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    Kotani M., Schulz-Baldes H., Villegas-Blas C.: Quantization of interface currents. J. Math. Phys. 55(12), 121901 (2014)ADSMathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Kraus E., Ringel Z., Zilberberg O.: Four-dimensional quantum Hall effect in a two-dimensional quasicrystal. Phys. Rev. Lett. 111(22), 226401 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Li, D., Kaufmann, R.M., Wehefritz-Kaufmann, B.: Notes on topological insulators. arXiv:1501.02874
  34. 34.
    Li, D., Kaufmann, R.M., Wehefritz-Kaufmann, B.: Topological insulators and K-theory. arXiv:1510.08001
  35. 35.
    Marcolli, M., Mathai, V.: Twisted index theory on good orbifolds. II. Fractional quantum numbers. Commun. Math. Phys. 217(1), 55–87 (2001). arXiv:math/9911103
  36. 36.
    Mathai V.: K-theory of twisted group C*-algebras and positive scalar curvature. Contemp. Math. 231, 203–225 (1999)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    Mathai V., Quillen D.: Superconnections, Thom classes, and equivariant differential forms. Topology 25(1), 85–110 (1986)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Mathai, V., Rosenberg, J.: On mysteriously missing T-duals, H-flux and the T-duality group. In: Ge, M.-L., Zhang W. (eds.) Differential Geometry and Physics. Nankai Tracts Math., vol. 10, pp. 350–358. World Scientific Publishing, Hackensack (2006). arXiv:hep-th/0409073
  39. 39.
    Mathai, V., Rosenberg, J.: T-duality for torus bundles with H-fluxes via noncommutative topology. Commun. Math. Phys. 253(3), 705–721 (2005). arXiv:hep-th/0401168
  40. 40.
    Mathai, V., Rosenberg, J.: T-duality for torus bundles with H-fluxes via noncommutative topology, II; the high-dimensional case and the T-duality group. Adv. Theor. Math. Phys. 10(1), 123–158 (2006). arXiv:hep-th/0508084
  41. 41.
    Mathai, V., Thiang, G.C.: T-duality of topological insulators. J. Phys. A Math. Theor. (Fast Track Communications) 48(42), 42FT02 (2015). arXiv:1503.01206
  42. 42.
    Mathai, V., Thiang, G.C.: T-duality simplifies bulk-boundary correspondence. Commun. Math. Phys. doi: 10.1007/s00220-016-2619-6 arXiv:1505.05250 (Published online)
  43. 43.
    Nest R.: Cyclic cohomology of crossed products with \({\mathbb{Z}}\). J. Funct. Anal. 80(2), 235–283 (1988)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Nest R.: Cyclic cohomology of non-commutative tori. Can. J. Math. 40(5), 1046–1057 (1988)MathSciNetCrossRefGoogle Scholar
  45. 45.
    de Nittis G., Gomi K.: Classification of “Quaternionic” Bloch-bundles. Commun. Math. Phys. 339(1), 1–55 (2015)ADSMATHCrossRefGoogle Scholar
  46. 46.
    Packer J., Raeburn I.: Twisted crossed products of C*-algebras. Math. Proc. Camb. Philos. Soc. 106(2), 293–311 (1989)MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Packer J., Raeburn I.: Twisted crossed products of C*-algebras. II. Math. Ann. 287(1), 595–612 (1990)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Pimsner M., Voiculescu D.: Exact sequences for K-groups and EXT-groups of certain cross-product C*-algebras. J. Oper. Theory 4, 93–118 (1980)MathSciNetMATHGoogle Scholar
  49. 49.
    Prodan E.: Virtual topological insulators with real quantized physics. Phys. Rev. B 91, 245104 (2015)ADSCrossRefGoogle Scholar
  50. 50.
    Prodan E., Leung B., Bellissard J.: The non-commutative nth-Chern number (\({n \geq 1}\)). J. Phys. A 46(48), 485202 (2013)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Prodan E., Schulz-Baldes H.: Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics. Mathematical Physics Studies. Springer, Switzerland (2016)MATHCrossRefGoogle Scholar
  52. 52.
    Raeburn I., Szymański W.: Cuntz–Krieger algebras of infinite graphs and matrices. Trans. Am. Math. Soc. 356(1), 39–59 (2004)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Rieffel M.A.: Strong Morita equivalence of certain transformation group C*-algebras. Math. Ann. 222(1), 7–22 (1976)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Rieffel M.A.: C*-algebras associated with irrational rotations. Pac. J. Math. 93(2), 415–429 (1981)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Rieffel M.A.: Non-commutative tori—a case study of non-commutative differentiable manifolds. Contemp. Math. 105, 191–211 (1990)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Rieffel, M.A.: Deformation quantization for actions of \({ {\bf R}^d}\). Mem. Am. Math. Soc. 506 Providence, RI (1993)Google Scholar
  57. 57.
    Rieffel M.A.: Quantization and C*-algebras. Contemp. Math. 167, 67–97 (1994)MathSciNetMATHGoogle Scholar
  58. 58.
    Rosenberg J.: Real Baum–Connes assembly and T-duality for torus orientifolds. J. Geom. Phys. 89, 24–31 (2015)ADSMathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Shubin M.A.: Discrete magnetic Laplacian. Commun. Math. Phys. 164(2), 259–275 (1994)ADSMathSciNetMATHCrossRefGoogle Scholar
  60. 60.
    Sudo T.: K-theory of continuous fields of quantum tori. Nihonkai Math. J. 15(2), 141–152 (2004)MathSciNetMATHGoogle Scholar
  61. 61.
    Sunada T.: A discrete analogue of periodic magnetic Schrodinger operators. Contemp. Math. 173, 283–299 (1994)MathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Thiang G.C.: On the K-theoretic classification of topological phases of matter. Ann. Henri Poincaré 17(4), 757–794 (2016)ADSMathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Thiang, G.C.: Topological phases: homotopy, isomorphism and K-theory. Int. J. Geom. Methods Mod. Phys. 12(9), 150098 (2015). arXiv:1412.4191
  64. 64.
    Zhang S.-C., Hu J.: A four-dimensional generalization of the quantum Hall effect. Science 294(5543), 823–828 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.Department of Pure Mathematics, School of Mathematical SciencesUniversity of AdelaideAdelaideAustralia

Personalised recommendations