Skip to main content

A Local Trace Formula for Anosov Flows

Abstract

We prove a local trace formula for Anosov flows. It relates Pollicott–Ruelle resonances to the periods of closed orbits. As an application, we show that the counting function for resonances in a sufficiently wide strip cannot have a sublinear growth. In particular, for any Anosov flow there exist strips with infinitely many resonances.

This is a preview of subscription content, access via your institution.

References

  1. Anosov, D.V.: Geodesic flows on closed Riemannian manifolds with negative curvature. Proc. Steklov Inst. 90, 1–235 (1967)

  2. Alexandrova I.: Semiclassical wavefront set and Fourier integral operators. Can. J. Math. 60, 241–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baladi V., Tsujii M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier. 57(1), 127–154 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blank M., Keller G., Liverani C.: Ruelle–Perron–Frobenius spectrum for Anosov maps. Nonlinearity 15, 1905–1973 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bowen R.: Periodic orbits of hyperbolic flows. Am. J. Math. 94, 1–30 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bowen R., Ruelle D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Datchev K., Dyatlov S., Zworski M.: Sharp polynomial bounds on the number of Pollicott-Ruelle resonances. Ergod. Th. Dynam. Sys. 34, 1168–1183 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dimassi M., Sjöstrand J.: Spectral asymptotics in the semi-classical limit. Cambridge U Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  9. Dyatlov S., Faure F., Guillarmou C.: Power spectrum of the geodesic flow on hyperbolic manifolds. Anal. PDE. 8, 923–1000 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dyatlov, S., Guillarmou, C.: Pollicott-Ruelle resonances for open systems. arXiv:1410.5516

  11. Dyatlov, S., Zworski, M.: Dynamical zeta functions for Anosov flows via microlocal analysis. arXiv:1306.4203 (to appear in Ann. Sci. École Norm. Sup)

  12. Dyatlov S., Zworski M.: Stochastic stability of Pollicott–Ruelle resonances. Nonlinearity 28, 3511–3534 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Dyatlov, S., and Zworski, M.: Mathematical theory of scattering resonances. Book in preparation; http://math.mit.edu/~dyatlov/res/res

  14. Faure F., Roy N.: Ruelle-Pollicott resonances for real analytic hyperbolic maps. Nonlinearity 19, 1233–1252 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Faure F., Sjöstrand J.: Upper bound on the density of Ruelle resonances for Anosov flows. Comm. Math. Phys. 308(2), 325–364 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Faure F., Tsujii M.: Band structure of the Ruelle spectrum of contact Anosov flows. Comptes rendus – Mathématique 351, 385–391 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fried D.: Meromorphic zeta functions for analytic flows. Comm. Math. Phys. 174, 161–190 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Giulietti P., Liverani C., Pollicott M.: Anosov flows and dynamical zeta functions. Ann. Math. 178, 687–773 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guillemin V.: Lectures on spectral theory of elliptic operators. Duke Math J. 44, 485–517 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guillopé L., Zworski M.: The wave trace for Riemann surfaces. Geom. Funct. Anal. 9, 1156–1168 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hörmander L.: The analysis of linear partial differential operators vol. I. Springer, New york (1983)

    MATH  Google Scholar 

  22. Hörmander L.: The analysis of linear partial differential operators vol. III. Springer, New york (1985)

    MATH  Google Scholar 

  23. Ikawa M.: On the existence of poles of the scattering poles for several convex bodies. Proc. Japan Acad. 64, 91–93 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Levin, B. Ya.: Lectures on entire functions. Transl. Math. Monographs, vol. 150. Am. Math. Soc. Providence, RI (1996)

  25. Liverani C.: On contact Anosov flows. Ann. Math. 159, 1275–1312 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Melrose R.B.: Scattering theory and the trace formula of the wave group. J. Funct. Anal. 45, 429–440 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Naud F.: Entropy and decay of correlations for real analytic semiflows. Ann. Henri Poincaré. 10, 429–451 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Naud, F.: Notes sur la minoration pour les résonances de Ruelle des semi-flots analytiques. Unpublished, (2014)

  29. Nonnenmacher S., Zworski M.: Decay of correlations in normally hyperbolic trapping. Invent. Math. 200, 345–438 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 177–178, Société mathématique de France (1990)

  31. Pollicott M.: Meromorphic extensions of generalized zeta functions. Invent. Math. 85, 147–164 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Pollicott M.: Error terms in “prime orbit theorems” for locally constant suspended flows. Quart. J. Math. Oxford Ser. (2). 41, 313–323 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ruelle, D.: Flots qui ne mélangent pas exponentiellement. C. R. Acad. Sci. Paris Sér. I Math. 296(4), 191–193 (1983) (1983)

  34. Ruelle D.: Resonances of chaotic dynamical systems. Phys. Rev. Lett. 56, 405–407 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  35. Rugh H.H.: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems. Ergod. Th. Dyn. Sys. 16, 805–819 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Smale S.: Differentiable dynamical systems. Bull. AMS. 73, 747–817 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sjöstrand, J.: A trace formula and review of some estimates for resonances. In: Microlocal analysis and spectral theory (Lucca, 1996), 377–437, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht (1997)

  38. Sjöstrand J., Zworski M.: Lower bounds on the number of scattering poles II. J. Funct. Anal. 123, 336–367 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tsujii M.: Contact Anosov flows and the FBI transform. Ergod. Th. Dyn. Sys. 32, 2083–2118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zworski, M.: Poisson formula for resonances. Séminaire ÉDP, École Polytechnique, XIII-1-12, (1996–1997)

  41. Zworski, M.: Semiclassical analysis. Graduate Studies in Mathematics, vol. 138, AMS (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Jin.

Additional information

Communicated by Dmitry Dolgopyat.

With appendices by Frédéric Naud

Frédéric Naud address is Laboratoire d'Analyse nonlinéaire et géométrie, Université d'Avignon, Avignon, France and his email address is frederic.naud@univ-avignon.fr.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Zworski, M. A Local Trace Formula for Anosov Flows. Ann. Henri Poincaré 18, 1–35 (2017). https://doi.org/10.1007/s00023-016-0504-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-016-0504-7