Abstract
We prove a local trace formula for Anosov flows. It relates Pollicott–Ruelle resonances to the periods of closed orbits. As an application, we show that the counting function for resonances in a sufficiently wide strip cannot have a sublinear growth. In particular, for any Anosov flow there exist strips with infinitely many resonances.
This is a preview of subscription content, access via your institution.
References
Anosov, D.V.: Geodesic flows on closed Riemannian manifolds with negative curvature. Proc. Steklov Inst. 90, 1–235 (1967)
Alexandrova I.: Semiclassical wavefront set and Fourier integral operators. Can. J. Math. 60, 241–263 (2008)
Baladi V., Tsujii M.: Anisotropic Hölder and Sobolev spaces for hyperbolic diffeomorphisms. Ann. Inst. Fourier. 57(1), 127–154 (2007)
Blank M., Keller G., Liverani C.: Ruelle–Perron–Frobenius spectrum for Anosov maps. Nonlinearity 15, 1905–1973 (2002)
Bowen R.: Periodic orbits of hyperbolic flows. Am. J. Math. 94, 1–30 (1972)
Bowen R., Ruelle D.: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)
Datchev K., Dyatlov S., Zworski M.: Sharp polynomial bounds on the number of Pollicott-Ruelle resonances. Ergod. Th. Dynam. Sys. 34, 1168–1183 (2014)
Dimassi M., Sjöstrand J.: Spectral asymptotics in the semi-classical limit. Cambridge U Press, Cambridge (1999)
Dyatlov S., Faure F., Guillarmou C.: Power spectrum of the geodesic flow on hyperbolic manifolds. Anal. PDE. 8, 923–1000 (2015)
Dyatlov, S., Guillarmou, C.: Pollicott-Ruelle resonances for open systems. arXiv:1410.5516
Dyatlov, S., Zworski, M.: Dynamical zeta functions for Anosov flows via microlocal analysis. arXiv:1306.4203 (to appear in Ann. Sci. École Norm. Sup)
Dyatlov S., Zworski M.: Stochastic stability of Pollicott–Ruelle resonances. Nonlinearity 28, 3511–3534 (2015)
Dyatlov, S., and Zworski, M.: Mathematical theory of scattering resonances. Book in preparation; http://math.mit.edu/~dyatlov/res/res
Faure F., Roy N.: Ruelle-Pollicott resonances for real analytic hyperbolic maps. Nonlinearity 19, 1233–1252 (2006)
Faure F., Sjöstrand J.: Upper bound on the density of Ruelle resonances for Anosov flows. Comm. Math. Phys. 308(2), 325–364 (2011)
Faure F., Tsujii M.: Band structure of the Ruelle spectrum of contact Anosov flows. Comptes rendus – Mathématique 351, 385–391 (2013)
Fried D.: Meromorphic zeta functions for analytic flows. Comm. Math. Phys. 174, 161–190 (1995)
Giulietti P., Liverani C., Pollicott M.: Anosov flows and dynamical zeta functions. Ann. Math. 178, 687–773 (2013)
Guillemin V.: Lectures on spectral theory of elliptic operators. Duke Math J. 44, 485–517 (1977)
Guillopé L., Zworski M.: The wave trace for Riemann surfaces. Geom. Funct. Anal. 9, 1156–1168 (1999)
Hörmander L.: The analysis of linear partial differential operators vol. I. Springer, New york (1983)
Hörmander L.: The analysis of linear partial differential operators vol. III. Springer, New york (1985)
Ikawa M.: On the existence of poles of the scattering poles for several convex bodies. Proc. Japan Acad. 64, 91–93 (1988)
Levin, B. Ya.: Lectures on entire functions. Transl. Math. Monographs, vol. 150. Am. Math. Soc. Providence, RI (1996)
Liverani C.: On contact Anosov flows. Ann. Math. 159, 1275–1312 (2004)
Melrose R.B.: Scattering theory and the trace formula of the wave group. J. Funct. Anal. 45, 429–440 (1982)
Naud F.: Entropy and decay of correlations for real analytic semiflows. Ann. Henri Poincaré. 10, 429–451 (2009)
Naud, F.: Notes sur la minoration pour les résonances de Ruelle des semi-flots analytiques. Unpublished, (2014)
Nonnenmacher S., Zworski M.: Decay of correlations in normally hyperbolic trapping. Invent. Math. 200, 345–438 (2015)
Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 177–178, Société mathématique de France (1990)
Pollicott M.: Meromorphic extensions of generalized zeta functions. Invent. Math. 85, 147–164 (1986)
Pollicott M.: Error terms in “prime orbit theorems” for locally constant suspended flows. Quart. J. Math. Oxford Ser. (2). 41, 313–323 (1990)
Ruelle, D.: Flots qui ne mélangent pas exponentiellement. C. R. Acad. Sci. Paris Sér. I Math. 296(4), 191–193 (1983) (1983)
Ruelle D.: Resonances of chaotic dynamical systems. Phys. Rev. Lett. 56, 405–407 (1986)
Rugh H.H.: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems. Ergod. Th. Dyn. Sys. 16, 805–819 (1996)
Smale S.: Differentiable dynamical systems. Bull. AMS. 73, 747–817 (1967)
Sjöstrand, J.: A trace formula and review of some estimates for resonances. In: Microlocal analysis and spectral theory (Lucca, 1996), 377–437, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 490, Kluwer Acad. Publ., Dordrecht (1997)
Sjöstrand J., Zworski M.: Lower bounds on the number of scattering poles II. J. Funct. Anal. 123, 336–367 (1994)
Tsujii M.: Contact Anosov flows and the FBI transform. Ergod. Th. Dyn. Sys. 32, 2083–2118 (2012)
Zworski, M.: Poisson formula for resonances. Séminaire ÉDP, École Polytechnique, XIII-1-12, (1996–1997)
Zworski, M.: Semiclassical analysis. Graduate Studies in Mathematics, vol. 138, AMS (2012)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Dmitry Dolgopyat.
With appendices by Frédéric Naud
Frédéric Naud address is Laboratoire d'Analyse nonlinéaire et géométrie, Université d'Avignon, Avignon, France and his email address is frederic.naud@univ-avignon.fr.
Rights and permissions
About this article
Cite this article
Jin, L., Zworski, M. A Local Trace Formula for Anosov Flows. Ann. Henri Poincaré 18, 1–35 (2017). https://doi.org/10.1007/s00023-016-0504-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-016-0504-7