Abstract
Given a family of self-adjoint operators \({(A_t)_{t \in T}}\) indexed by a parameter t in some topological space T, necessary and sufficient conditions are given for the spectrum \({\sigma(A_t)}\) to be Vietoris continuous with respect to t. Equivalently the boundaries and the gap edges are continuous in t. If (T, d) is a complete metric space with metric d, these conditions are extended to guarantee Hölder continuity of the spectral boundaries and of the spectral gap edges. As a corollary, an upper bound is provided for the size of closing gaps.
References
- 1
Avron Y., Simon B.: Stability of gaps for periodic potentials under variation of a magnetic field. J. Phys. A 18, 2199–2205 (1985)
- 2
Barnsley, M.: Fractals everywhere. Academic Press (1988), Morgan Kaufmann 1993
- 3
Bellissard J., Simon B.: Cantor spectrum for the almost mathieu equation. J. Funct. Anal. 48, 408–419 (1982)
- 4
Bellissard, J.: Spectral properties of Schrödinger’s operator with a Thue-Morse potential. In: Number theory and physics, (Les Houches, 1989), Springer Proc. Phys., vol. 47, pp. 140–150. Springer, Berlin (1990)
- 5
Bellissard J., Bovier A., Ghez J.-M.: Spectral properties of a tight binding Hamiltonian with period doubling potential. Commun. Math. Phys. 135, 379–399 (1991)
- 6
Bellissard J., Iochum B., Testard D.: Continuity properties of the electronic spectrum of 1D quasicrystals. Commun. Math. Phys. 141, 353–380 (1991)
- 7
Bellissard, J.: Gap labelling theorems for Schrödinger operators. In From number theory to physics, (Les Houches, 1989), pp. 538-630, Springer, Berlin (1992)
- 8
Bellissard, J.: The gap labelling theorem: the case of automatic sequences. In: Quantum and non-commutative analysis, (Kyoto, 1992), Math. Phys. Stud., vol. 16, pp.179–181. Kluwer Acad. Publ., Dordrecht (1993)
- 9
Bellissard J.: Lipshitz continuity of gap boundaries for Hofstadter like spectra. Commun. Math. Phys. 160, 599–613 (1994)
- 10
Beer G.: Topologies on closed and closed convex sets. Kluwer Academic Publishers, Dordrecht (1994)
- 11
Castaing, C., Valadier, M.: Convex analysis and measurable multifunctions. Lecture Notes in Mathematics, vol. 580. Springer-Verlag, Berlin (1977)
- 12
Damanik, D., Gorodetski, A.: Spectral and quantum dynamical properties of the weakly couples Fibonacci hamiltonien. Commun. Math. Phys. 305, 221–277 (2011, See in particular Theorems 1.3 & 1.6.)
- 13
Dixmier J., Douady A.: Champs continus d’espaces hilbertiens et de C*-algèbres” (French). Bull. Soc. Math. France 91, 227–284 (1963)
- 14
Dixmier, J.: Les C*-algèbres et leurs représentations. (French) Cahiers Scientifiques, Fasc. XXIX Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris (1964); Reprint of the second (1969) edition. Les Grands Classiques Gauthier-Villars. [Gauthier-Villars Great Classics] Éditions Jacques Gabay, Paris (1996)
- 15
Fell J.M.G.: A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space. Proc. Am. Math. Soc. 13, 472–476 (1962)
- 16
Filippov V.V.: Basic topological structure of ordinary differential equations. Springer Science & Business Media, Berlin (2013)
- 17
Gromov M.: Metric structures for Riemannian and non-Riemannian spaces. Birkhäuser, Boston (1999)
- 18
Hausdorff F.: Grundzüge der Mengenlehre. Veit, Leipzig (1914)
- 19
Hausdorff, F.: [1927], Mengenlehre, 3rd edn. Berlin-Leipzig: de Gruyter (1935, Republished by Dover Publications, New York (1944))
- 20
Hausdorff, F.: [1957], Set theory, 2nd edn. Chelsea Publishing Co., New York (1962, Republished by AMS-Chelsea (2005))
- 21
Helffer B., Sjöstrand J.: Analyse semi-classique pour l’équation de Harper. II. Comportement semi-classique près d’un rationnel. Mém. Soc. Math. France (N.S.) 40, 139 (1990)
- 22
Kuratowski, K.: Topology. I & II. Acad. Press & PWN (1966–1968)
- 23
Lucchetti R., Pasquale A.: A new approach to a hyperspace theory. J. Convex Anal. 1, 173–193 (1994)
- 24
Munkres, J.: Topology: a first course, 2nd edn. Prentice-Hall (1975) 1999
- 25
Ostlund, S., Kim, S.-H.: Renormalization of quasiperiodic mappings. Phys. Scr. T9, 193–198 (1985, especially Fig. 2.)
- 26
Rammal R., Bellissard J.: An algebraic semiclassical approach to Bloch electrons in a magnetic field. J. Phys. France 51, 1803–1830 (1990)
- 27
Rieffel M.A.: C*-algebras associated with irrational rotations. Pac. J. Math. 95(2), 415–429 (1981)
- 28
Sire C., Mosseri R.: Excitation spectrum, extended states, gap closing: some exact results for codimension one quasicrystals. J. Phys. (France) 51, 1569–1583 (1990)
- 29
Tomiyama J., Takesaki M.: Applications of fibre bundles to the certain class of C*-algebras. Tôhoku Math. J. (2) 13, 498–522 (1961)
- 30
Tomiyama J.: Topological representation of C*-algebras. Tôhoku Math. J. (2) 14, 187–204 (1962)
- 31
Vietoris L.: Bereiche zweiter Ordnung. Monatsh. Math. Phys. 32(1), 258–280 (1922)
Author information
Affiliations
Corresponding author
Additional information
Work supported in part by NSF Grant DMS-1160962.
Communicated by Jan Dereziński.
Rights and permissions
About this article
Cite this article
Beckus, S., Bellissard, J. Continuity of the Spectrum of a Field of Self-Adjoint Operators. Ann. Henri Poincaré 17, 3425–3442 (2016). https://doi.org/10.1007/s00023-016-0496-3
Received:
Accepted:
Published:
Issue Date: