Abstract
The dissipative wave equation with a critical quintic non-linearity in smooth bounded three-dimensional domain is considered. Based on the recent extension of the Strichartz estimates to the case of bounded domains, the existence of a compact global attractor for the solution semigroup of this equation is established. Moreover, the smoothness of the obtained attractor is also shown.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Arrieta J., Carvalho A., Hale J.: A damped hyperbolic equation with critical exponent. Commun. Partial Differ. Equ. 17, 841–866 (1992)
Babin A., Vishik M.: Attractors of Evolutionary Equations. North Holland, Amsterdam (1992)
Ball J.: Global attractors for damped semilinear wave equations. Partial differential equations and applications. Discrete Contin. Dyn. Syst. 10(1–2), 31–52 (2004) doi:10.3934/dcds.2004.10.31
Blair M., Smith H., Sogge C.: Strichartz estimates for the wave equation on manifolds with boundary. Ann. I. H. Poincaré-AN 26, 1817–1829 (2009)
Burq N., Lebeau G., Planchon F.: Global existence for energy critical waves in 3D domains. J. AMS 21(3), 831–845 (2008)
Burq N., Planchon F.: Global existence for energy critical waves in 3-D domains: Neumann boundary conditions. Am. J. Math. 131(6), 1715–1742 (2009)
Chepyzhov V., Vishik M.: Attractors for Equations of Mathematical Physics. American Mathematical Society Colloquium Publications, vol. 49. American Mathematical Society, Providence (2002)
Chepyzhov V., Vishik M.: Evolution equations and their trajectory attractors. J. Math. Pures Appl. 76(10), 913–964 (1997) doi:10.1016/S0021-7824(97)89978-3
Feireisl E.: Asymptotic behaviour and attractors for a semilinear damped wave equation with supercritical exponent. Proc. R. Soc. Edinb. Sect. A 125(5), 1051–1062 (1995)
Grasselli M., Schimperna G., Zelik S.: On the 2D Cahn–Hilliard equation with inertial term. Commun. Partial Differ. Equ. 34(1–3), 137–170 (2009)
Grasselli M., Schimperna G., Segatti A., Zelik S.: On the 3D Cahn–Hilliard equation with inertial term. J. Evol. Equ. 9(2), 371–404 (2009)
Grillakis M.: Regularity and asymptotic behaviour of the wave equation with a critical nonlinearity. Ann. Math. (2) 132(3), 485–509 (1990)
Hale, J.: Asymptotic behavior of dissipative systems. Mathematical Surveys and Monographs no. 25. Amer. Math. Soc., Providence (1988)
Kapitanski, L.: The Cauchy problem for the semilinear wave equation. I. (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 163 (1987). Kraev. Zadachi Mat. Fiz. i Smezhn. Vopr. Teor. Funktsii 19, 76–104, 188; translation in J. Soviet Math. 49 no. 5, 1166–1186 (1990)
Kapitanski, L.: The Cauchy problem for the semilinear wave equation. II. (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 182 (1990). Kraev. Zadachi Mat. Fiz. i Smezh. Voprosy Teor. Funktsii. 21, 38–85, 171; translation in J. Soviet Math. 62 no. 3, 2746–2777 (1992)
Kapitanski L.: Global and unique weak solutions of nonlinear wave equations. Math. Res. Lett. 1(2), 211–223 (1994)
Kapitanski L.: Minimal compact global attractor for a damped semilinear wave equation. Commun. Partial Differ. Equ. 20(7–8), 1303–1323 (1995)
Ladyzhenskaya, O.: Attractors of nonlinear evolution problems with dissipation. (Russian) Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 152 (1986). Kraev. Zadachi Mat. Fiz. i Smezhnye Vopr. Teor. Funktsii 18, 72–85, 182
Lions J.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)
Masmoudi N., Planchon F.: On uniqueness for the critical wave equation. Commun. Partial Differ. Equ. 31(7–9), 1099–1107 (2006)
Miranville, A., Zelik, S.: Attractors for dissipative partial differential equations in bounded and unbounded domains. In: Dafermos, C.M., Pokorny, M. (eds.) Handbook of Differential Equations: Evolutionary Equations, vol. IV, pp. 103–200. Handb. Differ. Equ, Elsevier/North-Holland, Amsterdam (2008)
Moise I., Rosa R., Wang X.: Attractors for non-compact semigroups via energy equations. Nonlinearity 11(5), 1369–1393 (1998) doi:10.1088/0951-7715/11/5/012
Pata V., Zelik S.: A remark on the damped wave equation. Commun. Pure Appl. Anal. 5(3), 611–616 (2006)
Shatah J., Struwe M.: Regularity results for nonlinear wave equations. Ann. Math. 138(3), 503–518 (1993)
Shatah J., Struwe M.: Well-posedness in the energy space for semilinear wave equations with critical growth. Int. Math. Res. Not. 1994(7), 1–7 (1994)
Struwe M.: Globally regular solutions to the u 5 Klein–Gordon equation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15(3), 495–513 (1988)
Sogge C.: Lectures on Non-linear Wave Equations, 2nd edn. International Press, Boston (2008)
Strauss, W.: Nonlinear Wave Equations. CBMS Regional Conference Series in Mathematics, vol. 73. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI (1989)
Tao T.: Non-linear Dispersive Equations: Local and Global Analysis. CBMS Regional Conference Series in Mathematics. AMS, Providence (2006)
Temam R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Applied Mathematical Sciences, vol. 68. Springer-Verlag, New York (1997)
Zelik S.: Asymptotic regularity of solutions of nonautonomous damped wave equation with a critical growth exponent. Commun. Pure Appl. Anal. 3(4), 921–934 (2004)
Zelik S.: Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities. Discrete Contin. Dyn. Syst. 11(2–3), 351–392 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Nader Masmoudi.
This work is partially supported by the Russian Ministry of Education and Science (contract no. 8502).
Rights and permissions
About this article
Cite this article
Kalantarov, V., Savostianov, A. & Zelik, S. Attractors for Damped Quintic Wave Equations in Bounded Domains. Ann. Henri Poincaré 17, 2555–2584 (2016). https://doi.org/10.1007/s00023-016-0480-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-016-0480-y