Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Go to cart
  1. Home
  2. Annales Henri Poincaré
  3. Article
Asymptotics for Erdős–Solovej Zero Modes in Strong Fields
Download PDF
Download PDF
  • Open Access
  • Published: 09 April 2016

Asymptotics for Erdős–Solovej Zero Modes in Strong Fields

  • Daniel M. Elton1 

Annales Henri Poincaré volume 17, pages 2951–2973 (2016)Cite this article

  • 371 Accesses

  • 1 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We consider the strong field asymptotics for the occurrence of zero modes of certain Weyl–Dirac operators on \({\mathbb{R}^3}\). In particular, we are interested in those operators \({\mathcal{D}_B}\) for which the associated magnetic field \({B}\) is given by pulling back a two-form \({\beta}\) from the sphere \({\mathbb{S}^2}\) to \({\mathbb{R}^3}\) using a combination of the Hopf fibration and inverse stereographic projection. If \({\int_{\mathbb{s}^2} \beta \neq 0}\), we show that

$$\sum_{0 \leq t \leq T} {\rm dim Ker} \mathcal{D}{tB}=\frac{T^2}{8\pi^2}\,\Big| \int_{\mathbb{S}^2}\beta\Big|\,\int_{\mathbb{S}^2}|{\beta}| +o(T^2)$$

as \({T\to+\infty}\). The result relies on Erdős and Solovej’s characterisation of the spectrum of \({\mathcal{D}_{tB}}\) in terms of a family of Dirac operators on \({\mathbb{S}^2}\), together with information about the strong field localisation of the Aharonov–Casher zero modes of the latter.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Adam C., Muratori B., Nash C.: Zero modes of the Dirac operator in three dimensions. Phys. Rev. D 60, 125001 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  2. Adam C., Muratori B., Nash C.: Degeneracy of zero modes of the Dirac operator in three dimensions. Phys. Lett. B 485, 314–318 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Aharonov Y., Casher A.: Ground state of a spin-1/2 charged particle in a two-dimensional magnetic field. Phys. Rev. A 19(6), 2461–2462 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  4. Balinsky A.A., Evans W.D.: On the zero modes of Pauli operators. J. Funct. Anal. 179, 120–135 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Balinsky A.A., Evans W.D.: On the zero modes of Weyl–Dirac operators and their multiplicity. Bull. Lond. Math. Soc. 34, 236–242 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Elton D.M.: New examples of zero modes. J. Phys. A 33, 7297–7303 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Elton D.M.: The local structure of the set of zero mode producing magnetic potentials. Commun. Math. Phys. 229, 121–139 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Elton, D.M.: Approximate zero modes for the Pauli operator on a region. J. Spectr. Theory (2016) (in press)

  9. Elton D.M., Ta N.T.: Eigenvalue counting estimates for a class of linear spectral pencils with applications to zero modes. J. Math. Anal. Appl. 391, 613–618 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Erdős L., Solovej J.P.: The kernel of Dirac operators on \({\mathbb{S}^3}\) and \({\mathbb{R}^3}\). Rev. Math. Phys. 13, 1247–1280 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Freeden W., Schreiner M.: Spherical Functions of Mathematical Geosciences. Springer, Berlin (2009)

    MATH  Google Scholar 

  12. Friedrich, T.: Dirac Operators in Riemannian Geometry. Graduate Studies in Mathematics, vol. 25. AMS Providence (2000)

  13. Fröhlich J., Lieb E., Loss M.: Stability of Coulomb systems with magnetic fields. I: The one electron atom. Commun. Math. Phys. 104, 251–270 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gallot S., Hulin D., Lafontaine J.: Riemannian Geometry, 2nd edn. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  15. Hitchin N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kato T.: Perturbation Theory for Linear Operators, 2nd edn. Springer, Berlin (1980)

    MATH  Google Scholar 

  17. Loss M., Yau H.T.: Stability of Coulomb systems with magnetic fields. III: Zero energy states of the Pauli operator. Commun. Math. Phys. 104, 283–290 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Ta, N.T.: Results on the number of zero modes of the Weyl–Dirac operator. PhD Thesis, Lancaster University (2009)

  19. Thaller B.: The Dirac Equation. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  20. Weyl H.: Inequalities between two kinds of eigenvalues of a linear transformation. Proc. Natl. Acad. Sci. USA 35, 408–411 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics and Statistics, Lancaster University, Lancaster, LA1 4YF, UK

    Daniel M. Elton

Authors
  1. Daniel M. Elton
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Daniel M. Elton.

Additional information

Communicated by Jens Marklof.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elton, D.M. Asymptotics for Erdős–Solovej Zero Modes in Strong Fields. Ann. Henri Poincaré 17, 2951–2973 (2016). https://doi.org/10.1007/s00023-016-0478-5

Download citation

  • Received: 12 October 2015

  • Accepted: 14 February 2016

  • Published: 09 April 2016

  • Issue Date: October 2016

  • DOI: https://doi.org/10.1007/s00023-016-0478-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Line Bundle
  • Dirac Operator
  • Zero Mode
  • Dual Frame
  • Pauli Operator
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature