Annales Henri Poincaré

, Volume 17, Issue 7, pp 1737–1791 | Cite as

Lieb–Robinson Bounds, Arveson Spectrum and Haag–Ruelle Scattering Theory for Gapped Quantum Spin Systems

  • Sven Bachmann
  • Wojciech Dybalski
  • Pieter Naaijkens


We consider translation invariant gapped quantum spin systems satisfying the Lieb–Robinson bound and containing single-particle states in a ground state representation. Following the Haag–Ruelle approach from relativistic quantum field theory, we construct states describing collisions of several particles, and define the corresponding S-matrix. We also obtain some general restrictions on the shape of the energy–momentum spectrum. For the purpose of our analysis, we adapt the concepts of almost local observables and energy–momentum transfer (or Arveson spectrum) from relativistic QFT to the lattice setting. The Lieb–Robinson bound, which is the crucial substitute of strict locality from relativistic QFT, underlies all our constructions. Our results hold, in particular, in the Ising model in strong transverse magnetic fields.


Ising Model Mass Shell Local Observable Scatter Theory Asymptotic Completeness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Albanese C.: On the spectrum of the Heisenberg Hamiltonian. J. Stat. Phys. 55(1–2), 297–309 (1989)ADSMathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Albeverio S.: Scattering theory in a model of quantum fields. I. J. Math. Phys. 14, 1800–1816 (1973)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Araki H.: Mathematical Theory of Quantum Fields. Oxford Science Publications, Oxford (1999)MATHGoogle Scholar
  4. 4.
    Araki H., Haag R.: Collision cross sections in terms of local observables. Commun. Math. Phys. 4, 77–91 (1967)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Arveson, W.: The harmonic analysis of automorphism groups. In: Operator algebras and applications, Part I (Kingston, Ont., 1980), volume 38 of Proc. Sympos. Pure Math., pp. 199–269. Am. Math. Soc., Providence, R.I. (1982)Google Scholar
  6. 6.
    Bachmann S., Michalakis S., Nachtergaele B., Sims R.: Automorphic equivalence within gapped phases of quantum lattice systems. Commun. Math. Phys. 309(3), 835–871 (2011)ADSMathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Barata J.C.A.: Scattering states of charged particles in the Z 2 gauge theories. Commun. Math. Phys. 138(1), 175–191 (1991)ADSMathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Barata J.C.A.: Reduction formulae for Euclidean lattice theories. Commun. Math. Phys. 143(3), 545–558 (1992)ADSMathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Barata J.C.A., Fredenhagen K.: Particle scattering in Euclidean lattice field theories. Commun. Math. Phys. 138(3), 507–519 (1991)ADSMathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Billingsley P.: Probability and Measure. 3rd edn. Wiley, New York (1995)MATHGoogle Scholar
  11. 11.
    Borgs C., Kotecký R., Ueltschi D.: Low temperature phase diagrams for quantum perturbations of classical spin systems. Commun. Math. Phys. 181(2), 409–446 (1996)ADSMathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2: Equilibrium States. Models in Quantum Statistical Mechanics. 2nd edn. Springer, Berlin (1997)Google Scholar
  13. 13.
    Bravyi S., Hastings M.B.: A short proof of stability of topological order under local perturbations. Commun. Math. Phys. 307(3), 609–627 (2011)ADSMathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Brenig W., Haag R.: Allgemeine Quantentheorie der Stoßprozesse. Fortschr. Phys. 7(4–5), 183–242 (1959)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Bros J., Mund J.: Braid group statistics implies scattering in three-dimensional local quantum physics. Commun. Math. Phys. 315(2), 465–488 (2012)ADSMathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Buchholz D.: Collision theory for massless bosons. Commun. Math. Phys. 52, 147–173 (1977)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Buchholz D.: Harmonic analysis of local operators. Commun. Math. Phys. 129, 631–649 (1990)ADSMathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Buchholz D., Fredenhagen K.: Locality and the structure of particle states. Commun. Math. Phys. 84, 1–54 (1982)ADSMathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Burnap C.: Isolated one particle states in boson quantum field theory models. Annals of Physics 104, 184–196 (1977)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Correggi M., Giuliani A., Seiringer R.: Validity of the spin-wave approximation for the free energy of the Heisenberg ferromagnet. Commun. Math. Phys. 339, 279–307 (2015)ADSMathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Datta N., Fernández R., Fröhlich J.: Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground states. J. Stat. Phys. 84(3–4), 1–80 (1996)MathSciNetMATHGoogle Scholar
  22. 22.
    Datta N., Kennedy T.: Expansions for one quasiparticle states in spin 1/2 systems. J. Stat. Phys. 108(3–4), 373–399 (2002)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Dereziński J.: Asymptotic completeness of long-range N-body quantum systems. Ann. Math. 138(2), 427–476 (1993)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics. II. Commun. Math. Phys. 35, 49–85 (1974)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Doplicher S., Roberts J.E.: Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 131(1), 51–107 (1990)ADSMathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Duell, M.: Scattering in quantum field theories without mass gap, Araki–Haag approach. Master’s thesis, Technische Universität München (2013)Google Scholar
  27. 27.
    Dybalski W.: Haag–Ruelle scattering theory in presence of massless particles. Lett. Math. Phys. 72, 27–38 (2005)ADSMathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Dybalski W.: Continuous spectrum of automorphism groups and the infraparticle problem. Commun. Math. Phys. 300, 273–299 (2010)ADSMathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Dybalski W., Gérard C.: A criterion for asymptotic completeness in local relativistic QFT. Commun. Math. Phys. 332, 1167–1202 (2014)ADSMathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Einarsson T.: Fractional statistics on a torus. Phys. Rev. Lett. 64, 1995–1998 (1990)ADSMathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Evans D.: On the spectrum of a one parameter strongly continuous representation. Math. Scand. 39, 80–82 (1976)MathSciNetMATHGoogle Scholar
  32. 32.
    Fredenhagen K., Gaberdiel M.R., Rüger S.M.: Scattering states of plektons (particles with braid group statistics) in (2 + 1)-dimensional quantum field theory. Commun. Math. Phys. 175(2), 319–335 (1996)ADSMathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Graf G.M., Schenker D.: 2-magnon scattering in the Heisenberg model. Ann. Inst. H. Poincaré Phys. Théor. 67(1), 91–107 (1997)MathSciNetMATHGoogle Scholar
  34. 34.
    Haag R.: Quantum field theories with composite particles and asymptotic conditions. Phys. Rev. 112, 669–673 (1958)ADSMathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Haag R.: Local Quantum Physics. Springer, Berlin (1996)MATHCrossRefGoogle Scholar
  36. 36.
    Haegeman J., Michalakis S., Nachtergaele B., Osborne T.J., Schuch N., Verstraete F.: Elementary excitations in gapped quantum spin systems. Phys. Rev. Lett. 111, 080401 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    Halvorson, H., Müger, M.: Algebraic quantum field theory. In Butterfield, J., Earman, J., editors. Philosophy of Physics, pp. 731–922. Elsevier, Amsterdam (2006)Google Scholar
  38. 38.
    Hastings M.B.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265(3), 781–804 (2006)ADSMathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    Hepp K.: On the connection between the LSZ and Wightman quantum field theory. Commun. Math. Phys. 1(2), 95–111 (1965)ADSMathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Hepp K.: Scattering theory in the Heisenberg ferromagnet. Phys. Rev. B 5, 95–97 (1972)ADSCrossRefGoogle Scholar
  41. 41.
    Herdegen A.: On energy–momentum transfer of quantum fields. Lett. Math. Phys. 104, 1263–1280 (2014)ADSMathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Kennedy T., Tasaki H.: Hidden symmetry breaking and the Haldane phase in S = 1 quantum spin chains. Commun. Math. Phys. 147(3), 431–484 (1992)ADSMathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Kirkwood J.R., Thomas L.E.: Expansions and phase transitions for the ground state of quantum Ising lattice systems. Commun. Math. Phys. 88(4), 569–580 (1983)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    Kitaev A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303(1), 2–30 (2003)ADSMathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Lechner G.: Construction of quantum field theories with factorizing S-matrices. Commun. Math. Phys. 277(3), 821–860 (2008)ADSMathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Lehmann H., Symanzik K., Zimmermann W.: Zur Formulierung quantisierter Feldtheorien. Nuovo Cimento (10) 1, 205–225 (1955)ADSMathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28(3), 251–257 (1972)ADSMathSciNetCrossRefGoogle Scholar
  48. 48.
    Magnen J., Sénéor R.: Phase space cell expansion and Borel summability for the Euclidean \({\phi^4_3}\) theory. Commun. Math. Phys. 56, 237–276 (1979)ADSCrossRefGoogle Scholar
  49. 49.
    Malyshev, V.A.: One particle states and scattering theory for Markov processes. In: Locally interacting systems and their application in biology (Proc. School-Sem. on Markov Interaction Processes in Biology, Pushchino, 1976), volume 653 of Lecture Notes in Math., pp. 173–193. Springer, Berlin (1978)Google Scholar
  50. 50.
    Malyshev, V.A.: Elementarnoe vvedenie v matematicheskuyu fiziku beskonechnochastichnykh sistem [in Russian]. Lektsii dlya Molodykh Uchenykh [Lectures for Young Scientists], R17-83-363. Ob’ed. Inst. Yadernykh Issled., Dubna (1983)Google Scholar
  51. 51.
    Matsui T.: Uniqueness of the translationally invariant ground state in quantum spin systems. Commun. Math. Phys. 126(3), 453–467 (1990)ADSMathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Michalakis S., Zwolak J.P.: Stability of frustration-free Hamiltonians. Commun. Math. Phys. 322(2), 277–302 (2013)ADSMathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Mikeska, H.-J., Kolezhuk, A.K.: One-dimensional magnetism. In: Schollwöck, U., Richter, J., Farnell, D.J.J., Bishop, R.F., editors. Lecture Notes in Physics, pp. 1–83. Springer, Berlin (2004)Google Scholar
  54. 54.
    Müger M., Tuset L.: Monoids, embedding functors and quantum groups. Internat. J. Math. 19(1), 93–123 (2008)MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Naaijkens P.: Localized endomorphisms in Kitaev’s toric code on the plane. Rev. Math. Phys. 23(04), 347–373 (2011)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Nachtergaele B., Ogata Y., Sims R.: Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124(1), 1–13 (2006)ADSMathSciNetMATHCrossRefGoogle Scholar
  57. 57.
    Nachtergaele B., Sims R.: Lieb–Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265(1), 119–130 (2006)ADSMathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Nachtergaele, B., Sims, R.: Locality estimates for quantum spin systems. In: Sidoravičius, V., editor. New trends in Mathematical Physics, pp. 591–614. Springer, Berlin (2009)Google Scholar
  59. 59.
    Osterwalder, K., Sénéor, R.: The scattering matrix is non-trivial for weakly coupled \({P(\phi)_2}\) models. Helv. Phys. Acta 49, (1976)Google Scholar
  60. 60.
    Pedersen, G. K.: C*-Algebras and their Automorphism Groups, volume 14 of London Mathematical Society Monographs. Academic Press, Inc., London-New York (1979)Google Scholar
  61. 61.
    Plaschke M.: Wedge local deformations of charged fields leading to anyonic commutation relations. Lett. Math. Phys. 103(5), 507–532 (2013)ADSMathSciNetMATHCrossRefGoogle Scholar
  62. 62.
    Pokorny M.: Continuous spectrum in the ground state of two spin-1/2 models in the infinite-volume limit. J. Stat. Phys. 72(1–2), 381–403 (1993)ADSMathSciNetMATHCrossRefGoogle Scholar
  63. 63.
    Radin C.: Signal propagation in lattice models of quantum many-body systems. Commun. Math. Phys. 62(2), 159–166 (1978)ADSMathSciNetCrossRefGoogle Scholar
  64. 64.
    Reed, M., Simon, B.: Scattering Theory, Volume III of Methods of Modern Mathematical Physics. Academic, New York (1979)Google Scholar
  65. 65.
    Rehren K.-H.: Field operators for anyons and plektons. Commun. Math. Phys. 145(1), 123–148 (1992)ADSMathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Riesz, F., Sz-Nagy, B.: Leçons d’Analyse Fonctionnelle. 3rd edn. Gauthier-Villars, (1955)Google Scholar
  67. 67.
    Robinson D.W.: Properties of propagation of quantum spin systems. J. Austr. Math. Soc. 19, 387–399 (1976)MATHCrossRefGoogle Scholar
  68. 68.
    Ruelle D.: On the asymptotic condition in quantum field theory. Helv. Phys. Acta 35, 147–163 (1962)MathSciNetMATHGoogle Scholar
  69. 69.
    Sandhas W.: Definition and existence of multichannel scattering states. Commun. Math. Phys. 3(5), 358–374 (1966)ADSMathSciNetMATHCrossRefGoogle Scholar
  70. 70.
    Schmitz, M.: Lokalitätseigenschaften von Einteilchenzuständen in Quanten-Spinzuständen. Master’s thesis, University of Freiburg (1983)Google Scholar
  71. 71.
    Sigal I.M., Soffer A.: The N-particle scattering problem: Asymptotic completeness for short-range systems. Ann. Math. 126(1), 35–108 (1987)MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Tanimoto, Y.: Construction of two-dimensional quantum field models through Longo–Witten endomorphisms. Forum Math. Sigma 2, 1–31 (2014)Google Scholar
  73. 73.
    Vanderstraeten L., Haegeman J., Osborne T.J., Verstraete F.: S matrix from matrix product states. Phys. Rev. Lett. 112, 257202 (2014)ADSCrossRefGoogle Scholar
  74. 74.
    Wang, Z.: Topological Quantum Computation, Volume 112 of CBMS Regional Conference Series in Mathematics. Conference Board of the Mathematical Sciences, Washington, DC (2010)Google Scholar
  75. 75.
    Yarotsky D.A.: Perturbations of ground states in weakly interacting quantum spin systems. J. Math. Phys. 45(6), 2134 (2004)ADSMathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    Yarotsky, D.A.: Quasi-particles in weak perturbations of non-interacting quantum lattice systems. Preprint, arXiv:math-ph/0411042 (2004)
  77. 77.
    Yarotsky D.A.: Ground states in relatively bounded quantum perturbations of classical lattice systems. Commun. Math. Phys. 261(3), 799–819 (2005)ADSMathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  • Sven Bachmann
    • 1
  • Wojciech Dybalski
    • 2
  • Pieter Naaijkens
    • 3
  1. 1.Mathematisches Institut der Universität MünchenMünchenGermany
  2. 2.Zentrum MathematikTechnische Universität MünchenGarchingGermany
  3. 3.Institut für Theoretische PhysikLeibniz Universität HannoverHannoverGermany

Personalised recommendations