Annales Henri Poincaré

, Volume 16, Issue 7, pp 1609–1631 | Cite as

Explicit Riemannian Manifolds with Unexpectedly Behaving Center of Mass

  • Carla CederbaumEmail author
  • Christopher Nerz


The (relativistic) center of mass (CoM) of an asymptotically flat Riemannian manifold is often defined by certain surface integral expressions evaluated along a foliation of the manifold near infinity, e.g. by Arnowitt, Deser, and Misner (ADM). There are also what we call abstract definitions of the CoM in terms of a foliation near infinity itself, going back to the constant mean curvature (CMC-) foliation studied by Huisken and Yau; these give rise to surface integral expressions when equipped with suitable systems of coordinates. We discuss subtle asymptotic convergence issues regarding the ADM- and the coordinate expressions related to the CMC-CoM. In particular, we give explicit examples demonstrating that both can diverge—in a setting where Einstein’s equation is satisfied. We also give explicit examples of the same asymptotic order of decay with prescribed mass and CoM. We illustrate both phenomena by providing analogs in Newtonian gravity. Our examples conflict with some results in the literature.


Riemannian Manifold Scalar Curvature Matter Density Riemannian Metrics Dominant Energy Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arnowitt R., Deser S., Misner C.W.: Coordinate invariance and energy expressions in general relativity. Phys. Rev. 122(3), 997–1006 (1961)zbMATHMathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Bartnik R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Beig R., ÒMurchadha N.: The Poincaré group as the symmetry group of canonical general relativity. Ann. Phys. 174(2), 463–498 (1987)zbMATHGoogle Scholar
  4. 4.
    Cederbaum, C.: The Newtonian limit of geometrostatics. PhD thesis, FU Berlin (2012). arXiv:1201.5433v1
  5. 5.
    Chrúsciel P.T.: On the invariant mass conjecture in general relativity. Commun. Math. Phys. 120, 233–248 (1988)zbMATHADSCrossRefGoogle Scholar
  6. 6.
    Chen, P.-N., Huang, L.-H., Wang, M.-T., Yau, S.-T.: On the validity of the definition of angular momentum in general relativity (2014). arXiv:1401.0597v1
  7. 7.
    Corvino J.: Scalar curvature deformation and a gluing construction for the Einstein constraint equations. Commun. Math. Phys. 214(1), 137–189 (2000)zbMATHMathSciNetADSCrossRefGoogle Scholar
  8. 8.
    Corvino J., Schoen R.M.: On the asymptotics for the vacuum Einstein constraint equations. J. Differ. Geom. 73(2), 185–217 (2006)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Chan, P.-Y., Tam, L.-F.: A note on CoM (2014). arXiv:1402.1220v3
  10. 10.
    Corvino J., Wu H.: On the CoM of isolated systems. Class. Quantum Grav. 25, 1–18 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, P.-N., Wang, M.-T., Yau, S.-T.: Quasilocal angular momentum and CoM in general relativity (2013). arXiv:1312.0990v1
  12. 12.
    Christodoulou, D., Yau, S.-T.: Some remarks on the quasi-local mass. In: Isenberg J. (ed.) Mathematics and General Relativity (Santa Cruz, CA, 1986), vol. 71 of Contemp. Math., pp. 9–14. Am. Math. Soc., Providence, RI (1988)Google Scholar
  13. 13.
    De Lellis C., Müller S.: Optimal rigidity estimates for nearly umbilical surfaces. J. Differ. Geom. 69(1), 075–110 (2005)Google Scholar
  14. 14.
    Eichmair M., Metzger J.: Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions. Invent. Math. 194, 591–630 (2013)zbMATHMathSciNetADSCrossRefGoogle Scholar
  15. 15.
    Huang L.-H., Schoen R., Wang M.-T.: Specifying angular momentum and center of mass for vacuum initial data sets. Commun. Math. Phys. 306(3), 785–803 (2011)zbMATHMathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Huang L.-H.: On the CoM of isolated systems with general asymptotics. Class. Quantum Grav. 26(1), 015012 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Huang L.-H.: Foliations by stable spheres with constant mean curvature for isolated systems with general asymptotics. Commun. Math. Phys. 300(2), 331–373 (2010)zbMATHADSCrossRefGoogle Scholar
  18. 18.
    Huang L.-H.: Solutions of special asymptotics to the Einstein constraint equations. Class. Quantum Grav. 27(24), 245002 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    Huisken G., Yau S.-T.: Definition of CoM for isolated physical systems and unique foliations by stable spheres with constant mean curvature. Invent. Math. 124, 281–311 (1996)zbMATHMathSciNetADSCrossRefGoogle Scholar
  20. 20.
    Lamm T., Metzger J., Schulze F.: Foliations of asymptotically flat manifolds by surfaces of Willmore type. Math. Ann. 350(1), 1–78 (2011)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Metzger J.: Foliations of asymptotically flat 3-manifolds by 2-surfaces of prescribed mean curvature. J. Differ. Geom. 77(2), 201–236 (2007)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Nerz, C.: Time evolution of ADM and CMC CoM in general relativity (2013). arXiv:1312.6274v1
  23. 23.
    Regge T., Teitelboim C.: Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. 88(1), 286–318 (1974)zbMATHMathSciNetADSCrossRefGoogle Scholar
  24. 24.
    York, Jr., J.W.: Kinematics and dynamics of general relativity. In: Smarr. L.L. (ed.) Sources of Gravitational Radiation, pp. 83–126 (1979)Google Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Eberhard Karls Universität TübingenTübingenGermany

Personalised recommendations