We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Multi-Species Mean Field Spin Glasses. Rigorous Results | SpringerLink

Multi-Species Mean Field Spin Glasses. Rigorous Results

Abstract

We study a multi-species spin glass system where the density of each species is kept fixed at increasing volumes. The model reduces to the Sherrington–Kirkpatrick one for the single species case. The existence of the thermodynamic limit is proved for all density values under a convexity condition on the interaction. The thermodynamic properties of the model are investigated and the annealed, the replica-symmetric and the replica symmetry breaking bounds are proved using Guerra’s scheme. The annealed approximation is proved to be exact under a high-temperature condition. We show that the replica-symmetric solution has negative entropy at low temperatures. We study the properties of a suitably defined replica symmetry breaking solution and we optimize it within a novel ziggurat ansatz. The generalized order parameter is described by a Parisi-like partial differential equation.

References

  1. 1

    Barra A.: Irreducible free energy expansion and overlap locking in mean field spin glasses. J. Stat. Phys. 123(3), 601–614 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. 2.

    Barra A., Bernacchia A., Santucci E., Contucci P.: On the equivalence of Hopfield networks and Boltzmann machines. Neural Netw. 34, 1–9 (2012)

    Article  MATH  Google Scholar 

  3. 3

    Barra, A., Di Biasio, A., Guerra, F.: Replica symmetry breaking in mean field spin glasses trough Hamilton–Jacobi technique. J. Stat. Mech. P09006 (2010)

  4. 4

    Barra A., Genovese G., Guerra F.: The replica symmetric behavior of the analogical neural network. J. Stat. Phys. 140, 784–796 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. 5

    Barra A., Genovese G., Guerra F.: Equilibrium statistical mechanics of bipartite spin systems. J.Phys. A 44(24), 245002 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  6. 6

    Barra A., Genovese G., Guerra F., Tantari D.: How glassy are neural networks?. JSTAT 07, 07009 (2012)

    Google Scholar 

  7. 7

    Bovier A., Klimovsky A.: The Aizenman–Sims–Starr and Guerra’s schemes for the SK model with multidimensional spins. Electron. J. Probab. 14(8), 161–241 (2009)

    MATH  MathSciNet  Google Scholar 

  8. 8

    Fedele M., Contucci P.: Scaling limits for multispecies statistical mechanics mean-field models. J. Stat. Phys. 144(6), 1186–1205 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. 9

    Fedele M., Unguendoli F.: Rigorous results on the bipartite mean-field model. J. Phys. A Math. Theor. 45, 3850–3860 (2012)

    Article  MathSciNet  Google Scholar 

  10. 10

    Gallo I., Contucci P.: Bipartite mean field spin systems. Existence and solution. Math. Phys. E J. 14, 463 (2008)

    MathSciNet  Google Scholar 

  11. 11

    Guerra F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233, 1–12 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. 12

    Guerra, F.: The cavity method in the mean field spin glass model. In: Albeverio, S., et al. (eds.) Advances in Dynamical Systems and Quantum Physics. Singapore (1995)

  13. 13

    Guerra F., Toninelli F.L.: The infinite volume limit in generalized mean field disordered models. Markov Proc. Relat. Fields 9, 195–207 (2003)

    MATH  MathSciNet  Google Scholar 

  14. 14

    Guerra F., Toninelli F.L.: The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230, 71–79 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. 15

    Panchenko, D.: The Free Energy in a Multi-Species Sherrington–Kirkpatrick Model. arXiv:1310.6679 (2013)

  16. 16

    Panchenko, D., Talagrand, M.: Guerra’s Interpolation Using Derrida–Ruelle Cascades. arXiv:0708.3641 (2007)

  17. 17

    Talagrand, M.: Mean field models for spin glasses, volume II. In: Advanced Replica-Symmetry and Low Temperature. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics, vol. 55. Springer-Verlag, New York (2011)

  18. 18

    Talagrand M.: Spin glasses: a challenge for mathematicians. Cavity and mean field models. Springer Verlag, New York (2003)

    Google Scholar 

  19. 19

    Talagrand M.: A general form of certain mean field models for spin glasses. Probab. Theory Relat. Fields 143(1-2), 97–111 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. 20

    Talagrand, M.: Mean field models for spin glasses: some obnoxious problems. In: Spin Glasses Lecture Notes in Mathematics, vol. 1900, Springer, Berlin (2007)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emanuele Mingione.

Additional information

Communicated by Anton Bovier.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barra, A., Contucci, P., Mingione, E. et al. Multi-Species Mean Field Spin Glasses. Rigorous Results. Ann. Henri Poincaré 16, 691–708 (2015). https://doi.org/10.1007/s00023-014-0341-5

Download citation

Keywords

  • Thermodynamic Limit
  • Spin Glass
  • Annealed Approximation
  • Replica Symmetry
  • Spin Glass Model