Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Annales Henri Poincaré
  3. Article
Multi-Species Mean Field Spin Glasses. Rigorous Results
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Crisanti–Sommers Formula and Simultaneous Symmetry Breaking in Multi-species Spherical Spin Glasses

22 June 2022

Erik Bates & Youngtak Sohn

The Multi-species Mean-Field Spin-Glass on the Nishimori Line

02 January 2021

Diego Alberici, Francesco Camilli, … Emanuele Mingione

A Multi-scale Spin-Glass Mean-Field Model

30 January 2019

Pierluigi Contucci & Emanuele Mingione

Replica Symmetry Breaking in Multi-species Sherrington–Kirkpatrick Model

01 January 2019

Erik Bates, Leila Sloman & Youngtak Sohn

The Free Energy of a Quantum Sherrington–Kirkpatrick Spin-Glass Model for Weak Disorder

06 March 2021

Hajo Leschke, Sebastian Rothlauf, … Wolfgang Spitzer

Spherical Spin Glass Model with External Field

07 May 2021

Jinho Baik, Elizabeth Collins-Woodfin, … Hao Wu

Existence of Two-Step Replica Symmetry Breaking for the Spherical Mixed p-Spin Glass at Zero Temperature

14 September 2018

Antonio Auffinger & Qiang Zeng

Spectral Gap Estimates in Mean Field Spin Glasses

19 May 2018

Gérard Ben Arous & Aukosh Jagannath

Spectral form factor of a quantum spin glass

05 September 2022

Michael Winer, Richard Barney, … Brian Swingle

Download PDF
  • Published: 22 June 2014

Multi-Species Mean Field Spin Glasses. Rigorous Results

  • Adriano Barra1,
  • Pierluigi Contucci3,
  • Emanuele Mingione3 &
  • …
  • Daniele Tantari2 

Annales Henri Poincaré volume 16, pages 691–708 (2015)Cite this article

  • 381 Accesses

  • 40 Citations

  • Metrics details

Abstract

We study a multi-species spin glass system where the density of each species is kept fixed at increasing volumes. The model reduces to the Sherrington–Kirkpatrick one for the single species case. The existence of the thermodynamic limit is proved for all density values under a convexity condition on the interaction. The thermodynamic properties of the model are investigated and the annealed, the replica-symmetric and the replica symmetry breaking bounds are proved using Guerra’s scheme. The annealed approximation is proved to be exact under a high-temperature condition. We show that the replica-symmetric solution has negative entropy at low temperatures. We study the properties of a suitably defined replica symmetry breaking solution and we optimize it within a novel ziggurat ansatz. The generalized order parameter is described by a Parisi-like partial differential equation.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Barra A.: Irreducible free energy expansion and overlap locking in mean field spin glasses. J. Stat. Phys. 123(3), 601–614 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. Barra A., Bernacchia A., Santucci E., Contucci P.: On the equivalence of Hopfield networks and Boltzmann machines. Neural Netw. 34, 1–9 (2012)

    Article  MATH  Google Scholar 

  3. Barra, A., Di Biasio, A., Guerra, F.: Replica symmetry breaking in mean field spin glasses trough Hamilton–Jacobi technique. J. Stat. Mech. P09006 (2010)

  4. Barra A., Genovese G., Guerra F.: The replica symmetric behavior of the analogical neural network. J. Stat. Phys. 140, 784–796 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Barra A., Genovese G., Guerra F.: Equilibrium statistical mechanics of bipartite spin systems. J.Phys. A 44(24), 245002 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  6. Barra A., Genovese G., Guerra F., Tantari D.: How glassy are neural networks?. JSTAT 07, 07009 (2012)

    Google Scholar 

  7. Bovier A., Klimovsky A.: The Aizenman–Sims–Starr and Guerra’s schemes for the SK model with multidimensional spins. Electron. J. Probab. 14(8), 161–241 (2009)

    MATH  MathSciNet  Google Scholar 

  8. Fedele M., Contucci P.: Scaling limits for multispecies statistical mechanics mean-field models. J. Stat. Phys. 144(6), 1186–1205 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Fedele M., Unguendoli F.: Rigorous results on the bipartite mean-field model. J. Phys. A Math. Theor. 45, 3850–3860 (2012)

    Article  MathSciNet  Google Scholar 

  10. Gallo I., Contucci P.: Bipartite mean field spin systems. Existence and solution. Math. Phys. E J. 14, 463 (2008)

    MathSciNet  Google Scholar 

  11. Guerra F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233, 1–12 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Guerra, F.: The cavity method in the mean field spin glass model. In: Albeverio, S., et al. (eds.) Advances in Dynamical Systems and Quantum Physics. Singapore (1995)

  13. Guerra F., Toninelli F.L.: The infinite volume limit in generalized mean field disordered models. Markov Proc. Relat. Fields 9, 195–207 (2003)

    MATH  MathSciNet  Google Scholar 

  14. Guerra F., Toninelli F.L.: The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230, 71–79 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Panchenko, D.: The Free Energy in a Multi-Species Sherrington–Kirkpatrick Model. arXiv:1310.6679 (2013)

  16. Panchenko, D., Talagrand, M.: Guerra’s Interpolation Using Derrida–Ruelle Cascades. arXiv:0708.3641 (2007)

  17. Talagrand, M.: Mean field models for spin glasses, volume II. In: Advanced Replica-Symmetry and Low Temperature. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics, vol. 55. Springer-Verlag, New York (2011)

  18. Talagrand M.: Spin glasses: a challenge for mathematicians. Cavity and mean field models. Springer Verlag, New York (2003)

    Google Scholar 

  19. Talagrand M.: A general form of certain mean field models for spin glasses. Probab. Theory Relat. Fields 143(1-2), 97–111 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Talagrand, M.: Mean field models for spin glasses: some obnoxious problems. In: Spin Glasses Lecture Notes in Mathematics, vol. 1900, Springer, Berlin (2007)

Download references

Author information

Authors and Affiliations

  1. Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro, 5, Rome, Italy

    Adriano Barra

  2. Dipartimento di Matematica, Sapienza Università di Roma, Piazzale Aldo Moro, 5, Rome, Italy

    Daniele Tantari

  3. Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato, 5, Bologna, Italy

    Pierluigi Contucci & Emanuele Mingione

Authors
  1. Adriano Barra
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Pierluigi Contucci
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Emanuele Mingione
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Daniele Tantari
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Emanuele Mingione.

Additional information

Communicated by Anton Bovier.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barra, A., Contucci, P., Mingione, E. et al. Multi-Species Mean Field Spin Glasses. Rigorous Results. Ann. Henri Poincaré 16, 691–708 (2015). https://doi.org/10.1007/s00023-014-0341-5

Download citation

  • Received: 31 July 2013

  • Accepted: 05 April 2014

  • Published: 22 June 2014

  • Issue Date: March 2015

  • DOI: https://doi.org/10.1007/s00023-014-0341-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Thermodynamic Limit
  • Spin Glass
  • Annealed Approximation
  • Replica Symmetry
  • Spin Glass Model
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.200.171.156

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.