Abstract
We study a multi-species spin glass system where the density of each species is kept fixed at increasing volumes. The model reduces to the Sherrington–Kirkpatrick one for the single species case. The existence of the thermodynamic limit is proved for all density values under a convexity condition on the interaction. The thermodynamic properties of the model are investigated and the annealed, the replica-symmetric and the replica symmetry breaking bounds are proved using Guerra’s scheme. The annealed approximation is proved to be exact under a high-temperature condition. We show that the replica-symmetric solution has negative entropy at low temperatures. We study the properties of a suitably defined replica symmetry breaking solution and we optimize it within a novel ziggurat ansatz. The generalized order parameter is described by a Parisi-like partial differential equation.
References
Barra A.: Irreducible free energy expansion and overlap locking in mean field spin glasses. J. Stat. Phys. 123(3), 601–614 (2006)
Barra A., Bernacchia A., Santucci E., Contucci P.: On the equivalence of Hopfield networks and Boltzmann machines. Neural Netw. 34, 1–9 (2012)
Barra, A., Di Biasio, A., Guerra, F.: Replica symmetry breaking in mean field spin glasses trough Hamilton–Jacobi technique. J. Stat. Mech. P09006 (2010)
Barra A., Genovese G., Guerra F.: The replica symmetric behavior of the analogical neural network. J. Stat. Phys. 140, 784–796 (2010)
Barra A., Genovese G., Guerra F.: Equilibrium statistical mechanics of bipartite spin systems. J.Phys. A 44(24), 245002 (2011)
Barra A., Genovese G., Guerra F., Tantari D.: How glassy are neural networks?. JSTAT 07, 07009 (2012)
Bovier A., Klimovsky A.: The Aizenman–Sims–Starr and Guerra’s schemes for the SK model with multidimensional spins. Electron. J. Probab. 14(8), 161–241 (2009)
Fedele M., Contucci P.: Scaling limits for multispecies statistical mechanics mean-field models. J. Stat. Phys. 144(6), 1186–1205 (2011)
Fedele M., Unguendoli F.: Rigorous results on the bipartite mean-field model. J. Phys. A Math. Theor. 45, 3850–3860 (2012)
Gallo I., Contucci P.: Bipartite mean field spin systems. Existence and solution. Math. Phys. E J. 14, 463 (2008)
Guerra F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233, 1–12 (2003)
Guerra, F.: The cavity method in the mean field spin glass model. In: Albeverio, S., et al. (eds.) Advances in Dynamical Systems and Quantum Physics. Singapore (1995)
Guerra F., Toninelli F.L.: The infinite volume limit in generalized mean field disordered models. Markov Proc. Relat. Fields 9, 195–207 (2003)
Guerra F., Toninelli F.L.: The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230, 71–79 (2002)
Panchenko, D.: The Free Energy in a Multi-Species Sherrington–Kirkpatrick Model. arXiv:1310.6679 (2013)
Panchenko, D., Talagrand, M.: Guerra’s Interpolation Using Derrida–Ruelle Cascades. arXiv:0708.3641 (2007)
Talagrand, M.: Mean field models for spin glasses, volume II. In: Advanced Replica-Symmetry and Low Temperature. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge A Series of Modern Surveys in Mathematics, vol. 55. Springer-Verlag, New York (2011)
Talagrand M.: Spin glasses: a challenge for mathematicians. Cavity and mean field models. Springer Verlag, New York (2003)
Talagrand M.: A general form of certain mean field models for spin glasses. Probab. Theory Relat. Fields 143(1-2), 97–111 (2009)
Talagrand, M.: Mean field models for spin glasses: some obnoxious problems. In: Spin Glasses Lecture Notes in Mathematics, vol. 1900, Springer, Berlin (2007)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Anton Bovier.
Rights and permissions
About this article
Cite this article
Barra, A., Contucci, P., Mingione, E. et al. Multi-Species Mean Field Spin Glasses. Rigorous Results. Ann. Henri Poincaré 16, 691–708 (2015). https://doi.org/10.1007/s00023-014-0341-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-014-0341-5
Keywords
- Thermodynamic Limit
- Spin Glass
- Annealed Approximation
- Replica Symmetry
- Spin Glass Model