Annales Henri Poincaré

, Volume 16, Issue 1, pp 189–203 | Cite as

Reflection Positivity for Majoranas



We establish reflection positivity for Gibbs trace states defined by certain Hamiltonians that describe the interaction of Majoranas on a lattice. These Hamiltonians may include many-body interactions, as long as the signs of the associated coupling constants satisfy certain restrictions. We show that reflection positivity holds on an even sub-algebra of Majoranas.


Minus Sign Quantum Spin System Reflection Positivity Heisenberg Interaction Continuous Symmetry Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chesi S., Jaffe A., Loss D., Pedrocchi F.L.: Vortex loops and Majoranas. J. Math. Phys. 54, 112203 (2013). doi: 10.1063/1.4829273 ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    Dyson F.J., Lieb E.H., Simon B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–383 (1978)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fröhlich J.: Schwinger functions and their generating functionals. I. Helv. Phys. Acta. 47, 265–306 (1974)MATHGoogle Scholar
  4. 4.
    Fröhlich J., Simon B., Thomas S.: Infrared bounds, phase transitions, and continuous symmetry breaking. Commun. Math. Phys. 50, 79–85 (1976)ADSCrossRefGoogle Scholar
  5. 5.
    Fröhlich J., Lieb E.H.: Phase transitions in anisotropic lattice spin systems. Commun. Math. Phys. 60, 233–267 (1978)ADSCrossRefGoogle Scholar
  6. 6.
    Fröhlich J., Israel R., Lieb E.H., Simon B.: Phase transitions and reflection positivity. I. General theory and long range lattice models. Commun. Math. Phys. 62, 1–34 (1978)ADSCrossRefGoogle Scholar
  7. 7.
    Fröhlich J., Israel R., Lieb E.H., Simon B.: Phase transitions and reflection positivity. II. Short range lattice models and coulomb systems. J. Stat. Phys. 22, 297–347 (1980)ADSCrossRefGoogle Scholar
  8. 8.
    Glimm J., Jaffe A.: Quantum Physics, 2nd edn. Springer, New York (1987)CrossRefGoogle Scholar
  9. 9.
    Glimm J., Jaffe A., Spencer T.: Phase transitions for \({\phi^{4}_{2}}\) quantum fields. Commun. Math. Phys. 45, 203–216 (1975)ADSCrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Guerra, F., Rosen, L., Simon, B.: The P(ϕ)2 Euclidean quantum field theory as classical statistical mechanics I and II. Ann. Math. 101, 111–189; 191–259 (1975)Google Scholar
  11. 11.
    Jaffe, A., Pedrocchi, F.L.: Topological order and reflection positivity.
  12. 12.
    Kitaev A.: Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006)ADSCrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Lieb Elliott H.: Flux phase of the half-filled band. Phys. Rev. Lett. 73, 2158–2161 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    Macris N., Nachtergaele B.: On the flux phase conjecture at half-filling: an improved proof. J. Stat. Phys. 85, 745–761 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. I and II. Commun. Math. Phys. 31, 83–112 (1973)ADSCrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Osterwalder K., Schrader R.: Axioms for Euclidean Green’s functions. Commun. Math. Phys. 42, 281–305 (1975)ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Osterwalder K., Seiler E.: Gauge field theories on a lattice. Ann. Phys. 110, 440–471 (1978)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  1. 1.Harvard UniversityCambridgeUSA
  2. 2.Department of PhysicsUniversity of BaselBaselSwitzerland
  3. 3.Institute for Theoretical PhysicsETH ZürichZürichSwitzerland

Personalised recommendations