Advertisement

Annales Henri Poincaré

, Volume 15, Issue 12, pp 2321–2377 | Cite as

Eigenvalues of a One-Dimensional Dirac Operator Pencil

  • Daniel M. Elton
  • Michael Levitin
  • Iosif Polterovich
Article

Abstract

We study the spectrum of a one-dimensional Dirac operator pencil, with a coupling constant in front of the potential considered as the spectral parameter. Motivated by recent investigations of graphene waveguides, we focus on the values of the coupling constant for which the kernel of the Dirac operator contains a non-trivial square integrable function. In physics literature such a function is called a confined zero mode. Several results on the asymptotic distribution of coupling constants giving rise to zero modes are obtained. In particular, we show that this distribution depends in a subtle way on the sign variation and the presence of gaps in the potential. Surprisingly, it also depends on the arithmetic properties of certain quantities determined by the potential. We further observe that variable sign potentials may produce complex eigenvalues of the operator pencil. Some examples and numerical calculations illustrating these phenomena are presented.

Keywords

Potential Versus Dirac Operator Complex Eigenvalue Phase Plot Discrete Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, R.A.: Sobolev Spaces. Pure and Applied Mathematics 65. Academic Press New York (1975)Google Scholar
  2. 2.
    Avron J., Mouche P.H.M.v., Simon B.: On the measure of the Spectrum for the almost Mathieu operator. Commun. Math. Phys. 132, 103–118 (1990)CrossRefMATHADSGoogle Scholar
  3. 3.
    Bardarson J.H., Titov M., Brouwer P.W.: Electrostatic confinement of electrons in an integrable graphene quantum dot. Phys. Rev. Lett. 102, 226803 (2009)CrossRefADSGoogle Scholar
  4. 4.
    Birman M.S., Laptev A.: Discrete spectrum of the perturbed Dirac operator. Ark. Mat. 32, 13–32 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Birman, M.S., Solomyak, M.Z.: Spectral asymptotics of pseudodifferential operators with anisotropic homogeneous symbols, I. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 13, 13–21 (1977)Google Scholar
  6. 6.
    Birman, M.S., Solomyak, M.Z.: Spectral asymptotics of pseudodifferential operators with anisotropic homogeneous symbols, II. Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 13, 5–10 (1979) (Russian)Google Scholar
  7. 7.
    Brey L., Fertig H.A.: Emerging zero modes for graphene in a periodic potential. Phys. Rev. Lett. 103, 046809 (2009)CrossRefADSGoogle Scholar
  8. 8.
    Cwikel M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. Math. 106, 93–100 (1977)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Golden K., Goldstein S., Lebowitz J.L.: Classical transport in modulated structures. Phys. Rev. Lett. 55(24), 2629–2632 (1985)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Elton D.M., Ta N.T.: Eigenvalue counting estimates for a class of linear spectral pencils with applications to zero modes. J. Math. Anal. Appl. 391, 613–618 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Gesztesy F., Gurarie D., Holden H., Klaus M., Sadun L., Simon B., Vogl P.: Trapping and cascading eigenvalues in the large coupling limit. Commun. Math. Phys. 118, 597–634 (1988)MathSciNetCrossRefMATHADSGoogle Scholar
  12. 12.
    Hartman P.: Ordinary Differential Equations. Wiley, New York (1964)MATHGoogle Scholar
  13. 13.
    Hartmann R.R., Robinson N.J., Portnoi M.E.: Smooth electron waveguides in graphene. Phys. Rev. B 81, 245431 (2010)CrossRefADSGoogle Scholar
  14. 14.
    Jitomirskaya S., Marx C.A.: Analytic quasi-periodic Schrdinger operators and rational frequency approximants. Geom. Funct. Anal. 22(5), 1407–1443 (2012)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kac M.: On the distribution of values of trigonometric sums with linearly independent frequencies. Am. J. Math. 65(4), 609–615 (1943)CrossRefMATHGoogle Scholar
  16. 16.
    Kac M., van Kampen E.R., Wintner A.: On the distribution of the values of real almost periodic functions. Am. J. Math. 61, 985–991 (1939)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Klaus M.: On the point spectrum of Dirac operators. Helv. Phys. Acta 53, 453–462 (1980)MathSciNetGoogle Scholar
  18. 18.
    Reed M., Simon B.: Methods of Modern Mathematical Physics IV: Analysis of Operators. Academic Press, San Diego (1978)MATHGoogle Scholar
  19. 19.
    Rudin W.: Real and Complex Analysis. McGraw-Hill, Singapore (1987)MATHGoogle Scholar
  20. 20.
    Safronov O.: The discrete spectrum of selfadjoint perturbations of variable sign. Commun. PDE 26(3–4), 629–649 (2001)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Schmidt K.M.: Spectral properties of rotationally symmetric massless Dirac operators. Lett. Math. Phys. 92, 231–241 (2010)MathSciNetCrossRefMATHADSGoogle Scholar
  22. 22.
    Stein E.M., Shakarchi R.: Fourier Analysis: An Introduction. Princeton University Press, Princeton (2003)Google Scholar
  23. 23.
    Stein P.: On the real zeros of a certain trigonometric function. Math. Proc. Camb. Philos. Soc. 31, 455–467 (1935)CrossRefADSGoogle Scholar
  24. 24.
    Stone D.A., Downing C.A., Portnoi M.E.: Searching for confined modes in graphene channels: the variable phase method. Phys. Rev. B 86, 075464 (2012)CrossRefADSGoogle Scholar
  25. 25.
    Wegert E., Semmler G.: Phase plots of complex functions: a journey in illustration. Notices AMS 58, 768–780 (2010)MathSciNetGoogle Scholar
  26. 26.
    Weyl H.: Inequalities between two kinds of eigenvalues of a linear transformation. Proc. Natl. Acad. Sci. USA 35, 408–411 (1949)MathSciNetCrossRefMATHADSGoogle Scholar

Copyright information

© Springer Basel 2013

Authors and Affiliations

  • Daniel M. Elton
    • 1
  • Michael Levitin
    • 2
  • Iosif Polterovich
    • 3
  1. 1.Department of Mathematics and StatisticsFylde College, Lancaster UniversityLancasterUK
  2. 2.Department of Mathematics and StatisticsUniversity of Reading, WhiteknightsReadingUK
  3. 3.Département de mathématiques et de statistiqueUniversité de MontréalMontrealCanada

Personalised recommendations