Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Annales Henri Poincaré
  3. Article
Itsy Bitsy Topological Field Theory
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

On number fields with power-free discriminant

17 January 2020

Joachim König

On the singular points of the orbifolds arising from integral, ternary quadratic forms

23 April 2018

José María Montesinos-Amilibia

Simultaneous Kummer congruences and $${\mathbb {E}}_\infty $$ E ∞ -orientations of KO and tmf

16 October 2018

Niko Naumann & Johannes Sprang

Quantum Wilson surfaces and topological interactions

06 February 2019

Olga Chekeres

The Triple-Point Spectrum of Closed Orientable 3-Manifolds

19 April 2019

Álvaro Lozano Rojo & Rubén Vigara

Orientation Twisted Homotopy Field Theories and Twisted Unoriented Dijkgraaf–Witten Theory

20 June 2019

Matthew B. Young

The Tate-Oort Group Scheme $$\mathbb{TO}_p$$TOp

01 November 2019

Miles Reid

A proof of a conjecture on trace-zero forms and shapes of number fields

31 August 2020

Guillermo Mantilla-Soler & Carlos Rivera-Guaca

Free field primaries in general dimensions: counting and construction with rings and modules

16 August 2018

Robert de Mello Koch & Sanjaye Ramgoolam

Download PDF
  • Published: 15 October 2013

Itsy Bitsy Topological Field Theory

  • Daniel V. Mathews1 

Annales Henri Poincaré volume 15, pages 1801–1865 (2014)Cite this article

  • 176 Accesses

  • 6 Citations

  • 1 Altmetric

  • Metrics details

Abstract

We construct an elementary, combinatorial kind of topological quantum field theory (TQFT), based on curves, surfaces, and orientations. The construction derives from contact invariants in sutured Floer homology and is essentially an elaboration of a TQFT defined by Honda–Kazez–Matić. This topological field theory stores information in binary format on a surface and has “digital” creation and annihilation operators, giving a toy-model embodiment of “it from bit”.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Baez, J., Stay, M.: Physics topology, logic and computation: a Rosetta Stone. In: New Structures for Physics. Lecture Notes in Physics, vol. 813, pp. 95–172. Springer, Berlin (2011)

  2. Bennequin, D.: Entrelacements et équations de Pfaff. Third Schnepfenried geometry conference, vol. 1 (Schnepfenried, 1982). Astérisque, vol. 107, pp. 87–161. Soc. Math. France, Paris (1983)

  3. Eliashberg Y.: Contact 3-manifolds twenty years since J. Martinet’s Work. Ann. Inst. Fourier (Grenoble) 42(1–2), 165–192 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Finkelstein D.: Space-time code. Phys. Rev. (2) 184, 1261–1271 (1969)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Freedman, M.H., Kitaev, A., Larsen, M.J., Wang, Z.: Topological quantum computation. Bull. Am. Math. Soc. (N.S.) 40(1), 31–38 (2003) (electronic). Mathematical challenges of the 21st century (Los Angeles, CA, 2000)

    Google Scholar 

  6. Frenkel I.B., Khovanov Mikhail G.: Canonical bases in tensor products and graphical calculus for \({U_q(\mathfrak{sl}_2)}\). Duke Math. J. 87(3), 409–480 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Giroux E.: Convexité en topologie de contact. Comment. Math. Helv. 66(4), 637–677 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Golovko, R.: The Embedded Contact Homology of Sutured Solid Tori I. (2009). http://arxiv.org/abs/0911.0055

  9. Golovko, R.: The Cylindrical Contact Homology of Universally Tight Sutured Contact Solid Tori. (2010). http://arxiv.org/abs/1006.4073

  10. Honda, K.: On the classification of tight contact structures. I. Geom. Topol. 4, 309–368 (2000) (electronic)

    Google Scholar 

  11. Honda, K., Kazez, W.H., Matić, G.: Contact Structures, Sutured Floer Homology and TQFT. (2008). http://arxiv.org/abs/0807.2431

  12. Honda K., Kazez W.H., Matić G.: On the contact class in Heegaard Floer homology. J. Differ. Geom. 83(2), 289–311 (2009)

    MATH  Google Scholar 

  13. Juhász, A.: Holomorphic discs and sutured manifolds. Algebr. Geom. Topol. 6, 1429–1457 (2006) (electronic)

    Google Scholar 

  14. Juhász András: Floer homology and surface decompositions. Geom. Topol. 12(1), 299–350 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kauffman, L.H., Lins, S.L.: Temperley–Lieb recoupling theory and invariants of 3-manifolds. In: Annals of Mathematics Studies, vol. 134. Princeton University Press, Princeton (1994)

  16. Kock, J.: Frobenius algebras and 2D topological quantum field theories. In: London Mathematical Society Student Texts, vol. 59. Cambridge University Press, Cambridge (2004)

  17. Major Seth A.: A spin network primer. Am. J. Phys. 67(11), 972–980 (1999)

    Article  MATH  ADS  Google Scholar 

  18. Massot, P.: Infinitely Many Universally Tight Torsion Free Contact Structures with Vanishing OzsvÁTh–SZabÓ Contact Invariants. (2009). http://arxiv.org/abs/0912.5107

  19. Mathews, D.: Chord Diagrams, Contact-Topological Quantum Field Theory, and Contact Categories. Ph.D. thesis, Stanford University (2009). http://www.danielmathews.info/research

  20. Mathews D.: Chord diagrams, contact-topological quantum field theory, and contact categories. Algebraic Geom. Topol. 10(4), 2091–2189 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Mathews, D.: Sutured Floer Homology, Sutured TQFT and Non-Commutative QFT. (2010). http://arxiv.org/abs/1006.5433

  22. Nakamoto A.: Diagonal transformations in quadrangulations of surfaces. J. Graph Theory 21(3), 289–299 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nakamoto A., Suzuki Y.: Diagonal slides and rotations in quadrangulations on the sphere. Yokohama Math. J. 55(2), 105–112 (2010)

    MATH  MathSciNet  Google Scholar 

  24. Negami S., Nakamoto A.: Diagonal transformations of graphs on closed surfaces. Sci. Rep. Yokohama Nat. Univ. Sect. I Math. Phys. Chem. 40, 71–97 (1993)

    MathSciNet  Google Scholar 

  25. Ozsváth, P., Szabó, Z.: Heegaard Floer homology and contact structures. Duke Math. J. 129(1), 39–61 (2005)

    Google Scholar 

  26. Penner R.C.: The decorated Teichmüller space of punctured surfaces. Comm. Math. Phys. 113(2), 299–339 (1987)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Penrose, R.: Angular momenum: an approach to combinatorial space-time. In: Quantum Theory and Beyond. Cambridge University Press, Cambridge (1971)

  28. Wendl, C.: A hierarchy of local symplectic filling obstructions for contact 3-manifolds. (2010). http://arxiv.org/abs/1009.2746

  29. Wheeler, J.A.: Information, physics, quantum: the search for links. In: Foundations of Quantum Mechanics in the Light of New Technology (Tokyo, 1989), pp. 354–368. Phys. Soc. Japan, Tokyo (1990)

  30. Witten E.: Topological quantum field theory. Comm. Math. Phys. 117(3), 353–386 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. Zarev, R.: Bordered Floer Homology for Sutured Manifolds. (2009). http://arxiv.org/abs/0908.1106

  32. Zarev, R.: Joining and Gluing Sutured Floer Homology. (2010). http://arxiv.org/abs/1010.3496

Download references

Author information

Authors and Affiliations

  1. School of Mathematical Sciences, Monash University, Victoria, 3800, Australia

    Daniel V. Mathews

Authors
  1. Daniel V. Mathews
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Daniel V. Mathews.

Additional information

Communicated by Marcos Marino.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mathews, D.V. Itsy Bitsy Topological Field Theory. Ann. Henri Poincaré 15, 1801–1865 (2014). https://doi.org/10.1007/s00023-013-0286-0

Download citation

  • Received: 28 August 2012

  • Accepted: 16 September 2013

  • Published: 15 October 2013

  • Issue Date: September 2014

  • DOI: https://doi.org/10.1007/s00023-013-0286-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Boundary Component
  • Contact Structure
  • Boundary Edge
  • Internal Vertex
  • Euler Class
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.238.134.157

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.