Abstract
We construct an elementary, combinatorial kind of topological quantum field theory (TQFT), based on curves, surfaces, and orientations. The construction derives from contact invariants in sutured Floer homology and is essentially an elaboration of a TQFT defined by Honda–Kazez–Matić. This topological field theory stores information in binary format on a surface and has “digital” creation and annihilation operators, giving a toy-model embodiment of “it from bit”.
References
Baez, J., Stay, M.: Physics topology, logic and computation: a Rosetta Stone. In: New Structures for Physics. Lecture Notes in Physics, vol. 813, pp. 95–172. Springer, Berlin (2011)
Bennequin, D.: Entrelacements et équations de Pfaff. Third Schnepfenried geometry conference, vol. 1 (Schnepfenried, 1982). Astérisque, vol. 107, pp. 87–161. Soc. Math. France, Paris (1983)
Eliashberg Y.: Contact 3-manifolds twenty years since J. Martinet’s Work. Ann. Inst. Fourier (Grenoble) 42(1–2), 165–192 (1992)
Finkelstein D.: Space-time code. Phys. Rev. (2) 184, 1261–1271 (1969)
Freedman, M.H., Kitaev, A., Larsen, M.J., Wang, Z.: Topological quantum computation. Bull. Am. Math. Soc. (N.S.) 40(1), 31–38 (2003) (electronic). Mathematical challenges of the 21st century (Los Angeles, CA, 2000)
Frenkel I.B., Khovanov Mikhail G.: Canonical bases in tensor products and graphical calculus for \({U_q(\mathfrak{sl}_2)}\). Duke Math. J. 87(3), 409–480 (1997)
Giroux E.: Convexité en topologie de contact. Comment. Math. Helv. 66(4), 637–677 (1991)
Golovko, R.: The Embedded Contact Homology of Sutured Solid Tori I. (2009). http://arxiv.org/abs/0911.0055
Golovko, R.: The Cylindrical Contact Homology of Universally Tight Sutured Contact Solid Tori. (2010). http://arxiv.org/abs/1006.4073
Honda, K.: On the classification of tight contact structures. I. Geom. Topol. 4, 309–368 (2000) (electronic)
Honda, K., Kazez, W.H., Matić, G.: Contact Structures, Sutured Floer Homology and TQFT. (2008). http://arxiv.org/abs/0807.2431
Honda K., Kazez W.H., Matić G.: On the contact class in Heegaard Floer homology. J. Differ. Geom. 83(2), 289–311 (2009)
Juhász, A.: Holomorphic discs and sutured manifolds. Algebr. Geom. Topol. 6, 1429–1457 (2006) (electronic)
Juhász András: Floer homology and surface decompositions. Geom. Topol. 12(1), 299–350 (2008)
Kauffman, L.H., Lins, S.L.: Temperley–Lieb recoupling theory and invariants of 3-manifolds. In: Annals of Mathematics Studies, vol. 134. Princeton University Press, Princeton (1994)
Kock, J.: Frobenius algebras and 2D topological quantum field theories. In: London Mathematical Society Student Texts, vol. 59. Cambridge University Press, Cambridge (2004)
Major Seth A.: A spin network primer. Am. J. Phys. 67(11), 972–980 (1999)
Massot, P.: Infinitely Many Universally Tight Torsion Free Contact Structures with Vanishing OzsvÁTh–SZabÓ Contact Invariants. (2009). http://arxiv.org/abs/0912.5107
Mathews, D.: Chord Diagrams, Contact-Topological Quantum Field Theory, and Contact Categories. Ph.D. thesis, Stanford University (2009). http://www.danielmathews.info/research
Mathews D.: Chord diagrams, contact-topological quantum field theory, and contact categories. Algebraic Geom. Topol. 10(4), 2091–2189 (2010)
Mathews, D.: Sutured Floer Homology, Sutured TQFT and Non-Commutative QFT. (2010). http://arxiv.org/abs/1006.5433
Nakamoto A.: Diagonal transformations in quadrangulations of surfaces. J. Graph Theory 21(3), 289–299 (1996)
Nakamoto A., Suzuki Y.: Diagonal slides and rotations in quadrangulations on the sphere. Yokohama Math. J. 55(2), 105–112 (2010)
Negami S., Nakamoto A.: Diagonal transformations of graphs on closed surfaces. Sci. Rep. Yokohama Nat. Univ. Sect. I Math. Phys. Chem. 40, 71–97 (1993)
Ozsváth, P., Szabó, Z.: Heegaard Floer homology and contact structures. Duke Math. J. 129(1), 39–61 (2005)
Penner R.C.: The decorated Teichmüller space of punctured surfaces. Comm. Math. Phys. 113(2), 299–339 (1987)
Penrose, R.: Angular momenum: an approach to combinatorial space-time. In: Quantum Theory and Beyond. Cambridge University Press, Cambridge (1971)
Wendl, C.: A hierarchy of local symplectic filling obstructions for contact 3-manifolds. (2010). http://arxiv.org/abs/1009.2746
Wheeler, J.A.: Information, physics, quantum: the search for links. In: Foundations of Quantum Mechanics in the Light of New Technology (Tokyo, 1989), pp. 354–368. Phys. Soc. Japan, Tokyo (1990)
Witten E.: Topological quantum field theory. Comm. Math. Phys. 117(3), 353–386 (1988)
Zarev, R.: Bordered Floer Homology for Sutured Manifolds. (2009). http://arxiv.org/abs/0908.1106
Zarev, R.: Joining and Gluing Sutured Floer Homology. (2010). http://arxiv.org/abs/1010.3496
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Marcos Marino.
Rights and permissions
About this article
Cite this article
Mathews, D.V. Itsy Bitsy Topological Field Theory. Ann. Henri Poincaré 15, 1801–1865 (2014). https://doi.org/10.1007/s00023-013-0286-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00023-013-0286-0
Keywords
- Boundary Component
- Contact Structure
- Boundary Edge
- Internal Vertex
- Euler Class